19 research outputs found

    Comparative Transcriptomics of Strawberries (Fragaria spp.) Provides Insights into Evolutionary Patterns

    Get PDF
    Multiple closely related species with genomic sequences provide an ideal system for studies on comparative and evolutionary genomics, as well as the mechanism of speciation. The whole genome sequences of six strawberry species (Fragaria spp.) have been released, which provide one of the richest genomic resources of any plant genus. In this study, we first generated seven transcriptome sequences of Fragaria species de novo, with a total of 48,557–82,537 unigenes per species. Combined with 13 other species genomes in Rosales, we reconstructed a phylogenetic tree at the genomic level. The phylogenic tree shows that Fragaria closed grouped with Rubus and the Fragaria clade is divided into three subclades. East Asian species appeared in every subclade, suggesting that the genus originated in this area at ∼7.99 Mya. Four species found in mountains of Southwest China originated at ∼3.98 Mya, suggesting that rapid speciation occurred to adapt to changing environments following the uplift of the Qinghai–Tibet Plateau. Moreover, we identified 510 very significantly positively selected genes in the cultivated species F. × ananassa genome. This set of genes was enriched in functions related to specific agronomic traits, such as carbon metabolism and plant hormone signal transduction processes, which are directly related to fruit quality and flavor. These findings illustrate comprehensive evolutionary patterns in Fragaria and the genetic basis of fruit domestication of cultivated strawberry at the genomic/transcriptomic level

    Genome-wide and molecular evolution analysis of the subtilase gene family in

    Get PDF
    Background Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape. Results In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants. Conclusions Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family

    Molecular Analysis of Evolution and Origins of Cultivated Hawthorn (Crataegus spp.) and Related Species in China

    Get PDF
    Hawthorn is of high economic value owing to its medicinal properties and health benefits. Crataegus is a member of the Rosaceae family; the genus has a complicated taxonomic history, and several theories on its origin have been proposed. In this study, 53 accessions from seven Crataegus taxa native to China and accessions of exotic Crataegus species (two from Europe and one from North America) were analyzed by specific locus amplified fragment sequencing (SLAF-seq). In total, 933,450 single-nucleotide polymorphisms were identified after filtering and used to investigate the species’ genomic evolution. Phylogenetic trees derived from nuclear simple sequence repeats (SSRs) and SLAF-seq data showed the same topology, in which Crataegus maximowiczii and Crataegus sanguineae formed a closely related cluster that was clearly separated from the cluster composed of Crataegus hupehensis, Crataegus pinnatifida, Crataegus pinnatifida var. major, Crataegus bretschneideri and Crataegus scabrifolia. Phylogenetic and structure analysis indicated that the seven Chinese Crataegus taxa had two separate speciation events. Plants that evolved the southwestern route shared the genepool with the European species, whereas plants along the northeastern route shared the genepool with the North American species. TreeMix genetic analysis revealed that C. bretschneideri may have a hybrid origin. This study provides valuable information on the origins of Chinese Crataegus and suggests an evolutionary model for the main Crataegus species that native to China

    Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau

    Get PDF
    The extreme environment of the Qinghai-Tibet Plateau (QTP) provides an ideal natural laboratory for studies on adaptive evolution. Few genome/transcriptome based studies have been conducted on how plants adapt to the environments of QTP compared to numerous studies on vertebrates. Crucihimalaya himalaica is a close relative of Arabidopsis with typical QTP distribution, and is hoped to be a new model system to study speciation and ecological adaptation in extreme environment. In this study, we de novo generated a transcriptome sequence of C. himalaica, with a total of 49,438 unigenes. Compared to five relatives, 10,487 orthogroups were shared by all six species, and 4,286 orthogroups contain putative single copy gene. Further analysis identified 487 extremely significantly positively selected genes (PSGs) in C. himalaica transcriptome. Theses PSGs were enriched in functions related to specific adaptation traits, such as response to radiation, DNA repair, nitrogen metabolism, and stabilization of membrane. These functions are responsible for the adaptation of C. himalaica to the high radiation, soil depletion and low temperature environments on QTP. Our findings indicate that C. himalaica has evolved complex strategies for adapting to the extreme environments on QTP and provide novel insights into genetic mechanisms of highland adaptation in plants

    How to survive in the world’s third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae)

    Get PDF
    Hippophae tibetana (Tibetan sea-buckthorn) is one of the highest distributed woody plants in the world (3,000-5,200 meters a.s.l.). It is characterized by adaptation to extreme environment and important economic values. Here, we combined PacBio Hifi platform and Hi-C technology to assemble a 1,452.75 Mb genome encoding 33,367 genes with a Contig N50 of 74.31 Mb, and inferred its sexual chromosome. Two Hippophae-specific whole-genome duplication events (18.7-21.2 million years ago, Ma; 28.6-32.4 Ma) and long terminal repeats retroelements (LTR-RTs) amplifications were detected. Comparing with related species at lower altitude, Ziziphus jujuba (<1, 700 meters a.s.l.), H. tibetana had some significantly rapid evolving genes involved in adaptation to high altitude habitats. However, comparing with Hippophae rhamnoides (<3, 700 meters a.s.l.), no rapid evolving genes were found except microtubule and microtubule-based process genes, H. tibetana has a larger genome, with extra 2, 503 genes (7.5%) and extra 680.46 Mb transposable elements (TEs) (46.84%). These results suggest that the changes in the copy number and regulatory pattern of genes play a more important role for H. tibetana adapting to more extreme and variable environments at higher altitude by more TEs and more genes increasing genome variability and expression plasticity. This suggestion was supported by two findings: nitrogen-fixing genes of H. tibetana having more copies, and intact TEs being significantly closer genes than fragmentary TEs. This study provided new insights into the evolution of alpine plants

    Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude

    Get PDF
    Crucihimalaya himalaica is a close relative of Arabidopsis with typical Qinghai–Tibet Plateau (QTP) distribution. Here, by combining short- and long-read sequencing technologies, we provide a de novo genome sequence of C. himalaica. Our results suggest that the quick uplifting of the QTP coincided with the expansion of repeat elements. Gene families showing dramatic contractions and expansions, as well as genes showing clear signs of natural selection, were likely responsible for C. himalaica’s specific adaptation to the harsh environment of the QTP. We also show that the transition to self-pollination of C. himalaica might have enabled its occupation of the QTP. This study provides insights into how plants might adapt to extreme environmental conditions

    Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.)

    Get PDF
    Strawberry (Fragaria spp.) has emerged as a model system for various fundamental and applied research in recent years. In total, the genomes of five different species have been sequenced over the past 10 y. Here, we report chromosome-scale reference genomes for five strawberry species, including three newly sequenced species’ genomes, and genome resequencing data for 128 additional accessions to estimate the genetic diversity, structure, and demographic history of key Fragaria species. Our analyses obtained fully resolved and strongly supported phylogenies and divergence times for most diploid strawberry species. These analyses also uncovered a new diploid species (Fragaria emeiensis Jia J. Lei). Finally, we constructed a pan-genome for Fragaria and examined the evolutionary dynamics of gene families. Notably, we identified multiple independent single base mutations of the MYB10 gene associated with white pigmented fruit shared by different strawberry species. These reference genomes and datasets, combined with our phylogenetic estimates, should serve as a powerful comparative genomic platform and resource for future studies in strawberry.DATA AVAILABILITY: The raw genomic reads generated in this study have been deposited in the NCBI Sequence Read Archive (BioProject nos. PRJNA743176 and PRJNA757203). The genome assembly and annotation files are available at the Genome Database for Rosaceae (F. daltoniana: https://www.rosaceae.org/Analysis/11885161; F. pentaphylla: https://www.rosaceae.org/Analysis/12137892; F. mandschurica: https://www.rosaceae.org/Analysis/12137893; F. nilgerrensis: https://www.rosaceae.org/Analysis/12137894; F. viridis: https://www.rosaceae.org/Analysis/12137895).National Natural Science Foundation of China; National Key Research and Development Project; Michigan State University AgBioResearch, US Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA); National Science Foundation; the European Research Council under the European Union’s Horizon 2020 research and innovation program and Ghent University.https://www.pnas.orghj2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Phylogeography of Thlaspi arvense (Brassicaceae) in China Inferred from Chloroplast and Nuclear DNA Sequences and Ecological Niche Modeling

    No full text
    Thlaspi arvense is a well-known annual farmland weed with worldwide distribution, which can be found from sea level to above 4000 m high on the Qinghai-Tibetan Plateau (QTP). In this paper, a phylogeographic history of T. arvense including 19 populations from China was inferred by using three chloroplast (cp) DNA segments (trnL-trnF, rpl32-trnL and rps16) and one nuclear (n) DNA segment (Fe-regulated transporter-like protein, ZIP). A total of 11 chloroplast haplotypes and six nuclear alleles were identified, and haplotypes unique to the QTP were recognized (C4, C5, C7 and N4). On the basis of molecular dating, haplotypes C4, C5 and C7 have separated from others around 1.58 Ma for cpDNA, which corresponds to the QTP uplift. In addition, this article suggests that the T. arvense populations in China are a mixture of diverged subpopulations as inferred by hT/vT test (hT ≤ vT, cpDNA) and positive Tajima’s D values (1.87, 0.05 < p < 0.10 for cpDNA and 3.37, p < 0.01 for nDNA). Multimodality mismatch distribution curves and a relatively large shared area of suitable environmental conditions between the Last Glacial Maximum (LGM) as well as the present time recognized by MaxEnt software reject the sudden expansion population model

    Horizontal gene transfer provides new insights into biological evolution

    No full text

    Fully Automatic Segmentation and Three-Dimensional Reconstruction of the Liver in CT Images

    No full text
    Automatic segmentation and three-dimensional reconstruction of the liver is important for liver disease diagnosis and surgical treatment. However, the shape of the imaged 2D liver in each CT image changes dramatically across the slices. In all slices, the imaged 2D liver is connected with other organs, and the connected organs also vary across the slices. In many slices, the intensities of the connected organs are the same with that of the liver. All these facts make automatic segmentation of the liver in the CT image an extremely difficult task. In this paper, we propose a heuristic approach to segment the liver automatically based on multiple thresholds. The thresholds are computed based on the slope difference distribution that has been proposed and verified in the previous research. Different organs in the CT image are segmented with the automatically computed thresholds, respectively. Then, different segmentation results are combined to delineate the boundary of the liver robustly. After the boundaries of the 2D liver in all the slices are identified, they are combined to form the 3D shape of the liver with a global energy minimization function. Experimental results verified the effectiveness of all the proposed image processing algorithms in automatic and robust segmentation of the liver in CT images
    corecore