9 research outputs found

    Dynamic analysis of slider-crank mechanism with clearance fault

    Get PDF
    In this paper, the dynamic behavior of the slider-crank mechanism with clearance fault is investigated. The revolute joint with clearance is equivalent to a virtual massless rod, and then the dynamic equation of the crank slider mechanism with clearance is established by the Lagrangian method. In addition, a three-dimensional dynamic model of the crank slider mechanism with clearance is also established by ADAMS. The numerical results show that the clearance affects the displacement and velocity response of the crank-slider mechanism in a weak way, but influences the acceleration response of the mechanism in a significant manner. Due to the existence of the clearance, the revolute joint of the mechanism produces a rub-impact phenomenon, and the larger the clearance, the greater the impact strength. During the rub-impact process, there are three kinds of motion states of separation, collision and contact occur

    Laparotomy and laparoscopy diversely affect macrophage-associated antimicrobial activity in a murine model

    Get PDF
    Background: Surgical intervention-related trauma contributes largely to the development of postoperative immunosuppression, with reduced resistance to secondary bacterial infection. This study compared the impact of laparotomy versus laparoscopy on macrophage-associated bactericidal ability and examined whether laparotomy renders the host more susceptible to microbial infection. Results: BALB/c mice were randomized into control, laparotomy, and laparoscopy groups. Laparotomy, but not laparoscopy, significantly downregulated CR3 expression on macrophages, diminished macrophage-induced uptake and phagocytosis of E. coli and S. aureus, and impaired macrophage-mediated intracellular bacterial killing. Consistent with this, mice that underwent laparotomy displayed substantially higher bacterial counts in the blood and visceral organs as well as a significantly enhanced mortality rate following bacterial infection, whereas mice subjected to laparoscopy did not show any defects in their bacterial clearance. Conclusion: Laparotomy has an adverse effect on host innate immunity against microbial infection by impairing macrophage-mediated phagocytosis and killing of the invaded bacteria. By contrast, laparoscopy appears to preserve macrophage-associated bactericidal ability, thus alleviating the development of postoperative immunosuppression

    PACE Solver Description: Hust-Solver - A Heuristic Algorithm of Directed Feedback Vertex Set Problem

    Get PDF
    A directed graph is formed by vertices and arcs from one vertex to another. The feedback vertex set problem (FVSP) consists in making a given directed graph acyclic by removing as few vertices as possible. In this write-up, we outline the core techniques used in the heuristic feedback vertex set algorithm, submitted to the heuristic track of the 2022 PACE challenge

    A Matching Pursuit Algorithm for Backtracking Regularization Based on Energy Sorting

    No full text
    The signal reconstruction quality has become a critical factor in compressed sensing at present. This paper proposes a matching pursuit algorithm for backtracking regularization based on energy sorting. This algorithm uses energy sorting for secondary atom screening to delete individual wrong atoms through the regularized orthogonal matching pursuit (ROMP) algorithm backtracking. The support set is continuously updated and expanded during each iteration. While the signal energy distribution is not uniform, or the energy distribution is in an extreme state, the reconstructive performance of the ROMP algorithm becomes unstable if the maximum energy is still taken as the selection criterion. The proposed method for the regularized orthogonal matching pursuit algorithm can be adopted to improve those drawbacks in signal reconstruction due to its high reconstruction efficiency. The experimental results show that the algorithm has a proper reconstruction

    Dynamic Analysis for a Reciprocating Compressor System with Clearance Fault

    No full text
    In order to explore the failure mechanism of a reciprocating compressor system with clearance fault, we implemented a computational framework whereby a simulation model of the mechanism is established using ADAMS software in this paper, and a typical reciprocating compressor model is introduced to validate the design model. In this work, the joint clearance faults between the crankshaft and linkage, between the linkage and crosshead, and in both locations are taken into account computationally. These faults are one of the major causes of vibration. Through dynamic calculation and analysis of a system with clearance fault, the simulated results show that these clearance faults directly influence the vibration. The larger the gap size, the more severe the vibration and the higher the amplitude of the vibration. Furthermore, the clearance number also affects the vibration greatly

    Fault Diagnosis of a Reciprocating Compressor Air Valve Based on Deep Learning

    No full text
    With the development of machine learning in recent years, the application of machine learning to machine fault diagnosis has become increasingly popular. Applying traditional feature extraction methods for complex systems will weaken the characterization capacity of features, which are not conducive to subsequent classification work. A reciprocating compressor is a complex system. In order to improve the fault diagnosis accuracy of complex systems, this paper does not use traditional fault diagnosis methods and applies deep convolutional neural networks (CNNs) to process this nonlinear and non-stationary fault signal. The valve fault data is obtained from the reciprocating compressor test bench of the Daqing Natural Gas Company. Firstly, the single-channel vibration signal is collected on the reciprocating compressor and the one-dimensional CNN (1-D CNN) is used for fault diagnosis and compared with the traditional model to verify the effectiveness of the 1-D CNN. Next, the collected eight channels signals (three channels of vibration signals, four channels of pressure signals, one channel key phase signal) are applied by 1-D CNN and 2-D CNN for fault diagnosis to verify the CNN that it is still suitable for multi-channel signal processing. Finally, further study on the influence of the input of different channel signal combinations on the model diagnosis accuracy is carried out. Experiments show that the seven-channel signal (three-channel vibration signal, four-channel pressure signal) with the key phase signal removed has the highest diagnostic accuracy in the 2-D CNN. Therefore, proper deletion of useless channels can not only speed up network operations but also improve diagnosis accuracy

    Establishing Ohmic Contact of a Radial Compressed CNT Bundle with High Work Function Metal

    No full text
    Establishing low-resistance ohmic contact is critical for developing electronic devices based on traditional silicon and new low-dimensional materials. Due to unprecedented electronic and mechanical properties, the one-dimensional carbon nanotubes (CNTs) have been used as source/drain, gate, or tunnel to fabricate transistors. However, the mechanism causing low-resistance ohmic contact is not clear yet. Here, the hybrid atomic force microscopy–scanning electron microscopy (AFM–SEM) instrument was developed to establish lower-resistance ohmic contact between a radial compressed deformed multiwalled CNT bundle and high work function metal (platinum and gold). The radial compression structure under strong van der Waals attraction was in situ characterized through the SEM image to obtain the diameter and width and through AFM to get height and to perform nanoindentation, indicating that Pt has the smaller radial compression deformation. Molecular dynamics simulations exhibit that compared to Pt, a wider ribbon-like graphene layer formed when the radial compressed CNTs contacted with Au. The bond forming and electron orbital overlapping between C atoms of deformed CNTs and the high work function metal atom is beneficial for good electrical contact
    corecore