15 research outputs found

    Plant H+-PPases: Reversible enzymes with contrasting functions dependent on membrane environment

    No full text
    This work was supported by the National Science Foundation (IOS1122148 to G.A.P., J.P.-V., K.R., and R.A.G.).Peer reviewe

    Pilot study of a novel classroom designed to prevent myopia by increasing children’s exposure to outdoor light

    Get PDF
    We sought to assess light characteristics and user acceptability of a prototype Bright Classroom (BC), designed to prevent children's myopia by exposing them to light conditions resembling the outdoors. Conditions were measured throughout the school year in the glass-constructed BC, a traditional classroom (TC) and outdoors. Teachers and children completed user questionnaires, and children rated reading comfort at different light intensities. A total of 230 children (mean age 10.2 years, 57.4% boys) and 13 teachers (36.8 years, 15.4% men) completed questionnaires. The median (Inter Quartile Range) light intensity in the BC (2,540 [1,330-4,060] lux) was greater than the TC (477 [245-738] lux, P < 0.001), though less than outdoors (19,500 [8,960-36,000] lux, P < 0.001). A prominent spectral peak at 490-560 nm was present in the BC and outdoors, but less so in the TC. Teachers and children gave higher overall ratings to the BC than TC, and light intensity in the BC in summer and on sunny days (>5,000 lux) was at the upper limit of children's comfort for reading. In summary, light intensity in the BC exceeds TC, and is at the practical upper limit for routine use. Children and teachers prefer the BC

    Pilot study of a novel classroom designed to prevent myopia by increasing children?s exposure to outdoor light

    No full text
    We sought to assess light characteristics and user acceptability of a prototype Bright Classroom (BC), designed to prevent children’s myopia by exposing them to light conditions resembling the outdoors. Conditions were measured throughout the school year in the glass-constructed BC, a traditional classroom (TC) and outdoors. Teachers and children completed user questionnaires, and children rated reading comfort at different light intensities. A total of 230 children (mean age 10.2 years, 57.4% boys) and 13 teachers (36.8 years, 15.4% men) completed questionnaires. The median (Inter Quartile Range) light intensity in the BC (2,540 [1,330–4,060] lux) was greater than the TC (477 [245–738] lux, P 5,000 lux) was at the upper limit of children’s comfort for reading. In summary, light intensity in the BC exceeds TC, and is at the practical upper limit for routine use. Children and teachers prefer the BC

    Purification, characterization, and preliminary serial crystallography diffraction advances structure determination of full-length human particulate guanylyl cyclase A receptor

    No full text
    18 pags., 11 figs.Particulate Guanylyl Cyclase Receptor A (pGC-A) is a natriuretic peptide membrane receptor, playing a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop methods to regulate pGC-A, structural information on the full-length form is needed. However, structural data on the transmembrane and intracellular domains are lacking. This work presents expression and optimization using baculovirus, along with the first purification of functional full-length human pGC-A. In vitro assays revealed the pGC-A tetramer was functional in detergent micelle solution. Based on our purification results and previous findings that dimer formation is required for functionality, we propose a tetramer complex model with two functional subunits. Previous research suggested pGC-A signal transduction is an ATP-dependent, two-step mechanism. Our results show the binding ligand also moderately activates pGC-A, and ATP is not crucial for activation of guanylyl cyclase. Furthermore, crystallization of full-length pGC-A was achieved, toward determination of its structure. Needle-shaped crystals with 3 Å diffraction were observed by serial crystallography. This work paves the road for determination of the full-length pGC-A structure and provides new information on the signal transduction mechanism.Tis project was supported by an award to J.C.B. and P.F. from the Mayo/ASU Structural Biology Alliance and by the Biodesign Center for Applied Structural Discovery at Arizona State University. Tis research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Ofce of Science user facility operated for the DOE Ofce of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.Peer reviewe

    High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source

    No full text
    Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth (`pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Å using 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide
    corecore