49 research outputs found

    Tin Nanoparticles Encapsulated Carbon Nanoboxes as High-Performance Anode for Lithium-Ion Batteries

    Get PDF
    One of the crucial challenges for applying Sn as an anode of lithium-ion batteries (LIBs) is the dramatic volume change during lithiation/delithiation process, which causes a rapid capacity fading and then deteriorated battery performance. To address this issue, herein, we report the design and fabrication of Sn encapsulated carbon nanoboxes (denoted as Sn@C) with yolk@shell architectures. In this design, the carbon shell can facilitate the good transport kinetics whereas the hollow space between Sn and carbon shell can accommodate the volume variation during repeated charge/discharge process. Accordingly, this composite electrode exhibits a high reversible capacity of 675 mAh g−1 at a current density of 0.8 A g−1 after 500 cycles and preserves as high as 366mAh g−1 at a higher current density of 3 A g−1 even after 930 cycles. The enhanced electrochemical performance can be ascribed to the crystal size reduction of Sn cores and the formation of polymeric gel-like layer outside the electrode surface after long-term cycles, resulting in improved capacity and enhanced rate performance

    Monolayer triphosphates MP\u3csub\u3e3\u3c/sub\u3e (M = Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction

    Get PDF
    Atomically thin two-dimensional (2D) materials have received intense research interest due to their novel properties and promising applications in nanodevices. By using density functional theory (DFT) calculations, we investigate catalytic activities of several newly predicted two-dimensional (2D) triphosphides GeP3, SnP3 and InP3 monolayers for hydrogen evolution reaction (HER). The calculation results show that GeP3 and SnP3 monolayers are active catalysts for HER with suitable free energy of hydrogen adsorption in the basal plane. In particular, the Gibbs free energy of hydrogen adsorption (ΔGH*) of GeP3 is 0.024 eV, a value even more favorable compared to the precious-group-metal (PGM) catalyst Pt. Moreover, the 2D GeP3 and SnP3 are intrinsically compatible with the graphene substrate so that the HER performance can be improved via building a hybrid multilayer with graphene sheet. The charge transfer from GeP3 or SnP3 to graphene, estimated to be 0.1278e or 0.2157e, can significantly enhance the electric conductivity and promote the electrocatalytic activity. Although the electronic band structure of GeP3 and SnP3 can be tuned by external strain, we find that the HER performance of GeP3 and SnP3 monolayer is actually insensitive to the external strain, a feature desirable for the catalytic application. The desirable properties for HER with nearly zero Gibbs free energy render 2D GeP3 and SnP3 promising candidates for future application in electrocatalysis. Includes Supplementary information

    Machine Learning‑Assisted Low‑Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction

    Get PDF
    Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional trial and error method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research

    Improved lithium ion battery performance by mesoporous Co3O 4 nanosheets grown on self-standing NiSix nanowires on nickel foam

    Get PDF
    Novel three-dimensional (3D) hierarchical NiSix/Co 3O4 core-shell nanowire arrays composed of NiSi x nanowire cores and branched Co3O4 nanosheet shells have been successfully synthesized by combining chemical vapor deposition and a simple but effective chemical bath deposition process followed by a calcination process. The resulting hierarchical NiSix/Co 3O4 core-shell nanowire arrays directly serve as binder- and conductive-agent-free electrodes for lithium ion batteries, which demonstrate remarkably improved electrochemical performances with excellent capacity retention and high rate capability on cycling. They can maintain a stable reversible capacity of 1279 mA h g-1 after 100 cycles at a current density of 400 mA g-1 and a capacity higher than 340 mA h g-1 even at a current density as high as 8 A g-1. Such superior electrochemical performance of the electrodes made by directly growing electro-active highly porous Co3O4 on a nanostructured NiSix conductive current collector makes them very promising for applications in high-performance lithium ion batteries. ? 2014 the Partner Organisations

    Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth

    Get PDF
    Abstract(#br)Metallic lithium promises the ultimate anode material for building next-generation Li batteries, though some fundamental hurdles remain unsolved. Li growth induced by hetero particles/atoms has recently emerged as a highly efficient route enabling spatial-control and dendrite-free Li deposition on anode hosts. However, the detailed mechanism of Li nucleation and its interaction with heterogeneous seeds are largely unknown. Herein, we investigate this issue by visualizing Au-seeded Li nucleation processes that guide Li deposition inside the one-dimensional hollow space of individual amorphous carbon nanotubes by in-situ transmission electron microscopy. A reversible two-step conversion process during Au–Li alloying/dealloying reactions is revealed, suggesting that the formation of Li 3 Au plays the actual role in inducing Li nucleation. We propose a front-growth scenario to explain the spatially confined Li growth and stripping kinetic behaviors, which involves the mass addition and removal at the deposition front through ion diffusion along the tubular carbon shell. As a comparison, nanotubes without gold seeds inside exhibit uncontrolled dendrite-like Li growth outside the carbon shell. We further demonstrate that Au-seed growth can be successful in encapsulating sodium metal for the first time. These findings provide mechanistic insights into heterogeneous seeded Li/Na nucleation and space-confined deposition for design of high-performance battery anodes

    Tin Nanoparticles Encapsulated Carbon Nanoboxes as High-Performance Anode for Lithium-Ion Batteries

    Get PDF
    One of the crucial challenges for applying Sn as an anode of lithium-ion batteries (LIBs) is the dramatic volume change during lithiation/delithiation process, which causes a rapid capacity fading and then deteriorated battery performance. To address this issue, herein, we report the design and fabrication of Sn encapsulated carbon nanoboxes (denoted as Sn@C) with yolk@shell architectures. In this design, the carbon shell can facilitate the good transport kinetics whereas the hollow space between Sn and carbon shell can accommodate the volume variation during repeated charge/discharge process. Accordingly, this composite electrode exhibits a high reversible capacity of 675 mAh g−1 at a current density of 0.8 A g−1 after 500 cycles and preserves as high as 366 mAh g−1 at a higher current density of 3 A g−1 even after 930 cycles. The enhanced electrochemical performance can be ascribed to the crystal size reduction of Sn cores and the formation of polymeric gel-like layer outside the electrode surface after long-term cycles, resulting in improved capacity and enhanced rate performance

    Monolayer triphosphates MP\u3csub\u3e3\u3c/sub\u3e (M = Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction

    Get PDF
    Atomically thin two-dimensional (2D) materials have received intense research interest due to their novel properties and promising applications in nanodevices. By using density functional theory (DFT) calculations, we investigate catalytic activities of several newly predicted two-dimensional (2D) triphosphides GeP3, SnP3 and InP3 monolayers for hydrogen evolution reaction (HER). The calculation results show that GeP3 and SnP3 monolayers are active catalysts for HER with suitable free energy of hydrogen adsorption in the basal plane. In particular, the Gibbs free energy of hydrogen adsorption (ΔGH*) of GeP3 is 0.024 eV, a value even more favorable compared to the precious-group-metal (PGM) catalyst Pt. Moreover, the 2D GeP3 and SnP3 are intrinsically compatible with the graphene substrate so that the HER performance can be improved via building a hybrid multilayer with graphene sheet. The charge transfer from GeP3 or SnP3 to graphene, estimated to be 0.1278e or 0.2157e, can significantly enhance the electric conductivity and promote the electrocatalytic activity. Although the electronic band structure of GeP3 and SnP3 can be tuned by external strain, we find that the HER performance of GeP3 and SnP3 monolayer is actually insensitive to the external strain, a feature desirable for the catalytic application. The desirable properties for HER with nearly zero Gibbs free energy render 2D GeP3 and SnP3 promising candidates for future application in electrocatalysis. Includes Supplementary information

    Tin Nanoparticles Encapsulated Carbon Nanoboxes as High-Performance Anode for Lithium-Ion Batteries

    Get PDF
    One of the crucial challenges for applying Sn as an anode of lithium-ion batteries (LIBs) is the dramatic volume change during lithiation/delithiation process, which causes a rapid capacity fading and then deteriorated battery performance. To address this issue, herein, we report the design and fabrication of Sn encapsulated carbon nanoboxes (denoted as Sn@C) with yolk@shell architectures. In this design, the carbon shell can facilitate the good transport kinetics whereas the hollow space between Sn and carbon shell can accommodate the volume variation during repeated charge/discharge process. Accordingly, this composite electrode exhibits a high reversible capacity of 675 mAh g−1 at a current density of 0.8 A g−1 after 500 cycles and preserves as high as 366mAh g−1 at a higher current density of 3 A g−1 even after 930 cycles. The enhanced electrochemical performance can be ascribed to the crystal size reduction of Sn cores and the formation of polymeric gel-like layer outside the electrode surface after long-term cycles, resulting in improved capacity and enhanced rate performance

    CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications

    No full text
    Nanoscale metal oxide materials have been attracting much attention because of their unique size- and dimensionality-dependent physical and chemical properties as well as promising applications as key components in micro/nanoscale devices. Cupric oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in batteries, supercapacitors, solar cells, gas sensors, bio sensors, nanofluid, catalysis, photodetectors, energetic materials, field emissions, superhydrophobic surfaces, and removal of arsenic and organic pollutants from waste water. This article presents a comprehensive review of recent synthetic methods along with associated synthesis mechanisms, characterization, fundamental properties, and promising applications of CuO nanostructures. The review begins with a description of the most common synthetic strategies, characterization, and associated synthesis mechanisms of CuO nanostructures. Then, it introduces the fundamental properties of CuO nanostructures, and the potential of these nanostructures as building blocks for future micro/nanoscale devices is discussed. Recent developments in the applications of various CuO nanostructures are also reviewed. Finally, several perspectives in terms of future research on CuO nanostructures are highlighted. (C) 2013 Elsevier Ltd. All rights reserved
    corecore