12,673 research outputs found

    Topological shape optimization of multifunctional tissue engineering scaffolds with level set method

    Full text link
    © 2016, Springer-Verlag Berlin Heidelberg. A tissue engineering scaffold provides a proper environment to support physiological loads, and enhance cell migration and delivery for re-modeling of regenerating tissue. Hence, in the design of scaffolds, it is required to control the scaffold architecture with mechanical and mass transport properties simultaneously. In this paper, a level set-based topology optimization method will be developed to systematically generate three dimensional (3D) microstructures for tissue engineering scaffolds, with the prescribed properties for mechanical stiffness, fluid porosity and permeability. To create the internal architecture for scaffolds with desired properties, the numerical homogenization method will be used to evaluate the effective properties of the microstructure for building the periodic composite media, and a parametric level set method will be introduced to find the optimized shape and topology of the microstructure. Several numerical examples are used to demonstrate the effectiveness of the proposed method in achieving scaffolds with desired multifunctional properties, within the numerically estimated cross-property bounds between the effective bulk modulus and permeability under different porosities

    Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice

    Full text link
    We have precisely determined the ground state phase diagram of the quantum spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the tensor renormalization group method. We find that the ferromagnetic, ferroquadrupolar, and a large part of the antiferromagnetic phases are stable against quantum fluctuations. However, around the phase where the ground state is antiferroquadrupolar ordered in the classical limit, quantum fluctuations suppress completely all magnetic orders, leading to a plaquette order phase which breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the evidence of our numerical results, the quantum phase transition between the antiferromagnetic phase and the plaquette phase is found to be either a direct second order or a very weak first order transition.Comment: 6 pages, 9 figures, published versio

    Querying cohesive subgraphs by keywords

    Full text link
    © 2018 IEEE. Keyword search problem has been widely studied to retrieve related substructures from graphs for a keyword set. However, existing well-studied approaches aim at finding compact trees/subgraphs containing the keywords, and ignore a critical measure, density, to reflect how strongly and stablely the keyword nodes are connected in the substructure. In this paper, we study the problem of finding a cohesive subgraph containing the query keywords based on the k-Truss model, and formulate it as minimal dense truss search problem, i.e., finding minimal subgraph with maximum trussness covering the keywords. We first propose an efficient algorithm to find the dense truss with the maximum trussness containing keywords based on a novel hybrid KT-Index (Keyword-Truss Index). Then, we develop a novel refinement approach to extract the minimal dense truss based on the anti-monotonicity property of k-Truss. Experimental studies on real datasets show the outperformance of our method

    Submillimeter continuum observations of Sagittarius B2 at subarcsecond spatial resolution

    Get PDF
    We report the first high spatial resolution submillimeter continuum observations of the Sagittarius B2 cloud complex using the Submillimeter Array (SMA). With the subarcsecond resolution provided by the SMA, the two massive star-forming clumps Sgr B2(N) and Sgr B2(M) are resolved into multiple compact sources. In total, twelve submillimeter cores are identified in the Sgr B2(M) region, while only two components are observed in the Sgr B2(N) clump. The gas mass and column density are estimated from the dust continuum emission. We find that most of the cores have gas masses in excess of 100 M_{\odot} and column densities above 1025^{25} cm2^{-2}. The very fragmented appearance of Sgr B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well fitted by a Plummer density distribution. This would lead one to believe that in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms first in an homogeneous core, and the rest of the cluster forms subsequently in the then fragmenting structure.Comment: 4 pages, 2 figures, accepted by A&A letter

    Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A

    Get PDF

    Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography

    Full text link
    We report on the fabrication of domain-reversed structures in LiNbO3 by means of direct electron beam lithography at room temperature without any static bias. The LiNbO3 crystals were chemically etched after the exposure of electron beam and then, the patterns of domain inversion were characterized by atomic force microscopy (AFM). In our experiment, an interesting phenomenon occurred when the electron beam wrote a one-dimensional (1-D) grating on the negative c-face: a two-dimensional (2-D) dotted array was observed on the positive c- face, which is significant for its potential to produce 2-D and three-dimensional photonic crystals. Furthermore, we also obtained 2-D ferroelectric domain inversion in the whole LiNbO3 crystal by writing the 2-D square pattern on the negative c-face. Such a structure may be utilized to fabricate 2-D nonlinear photonic crystal. AFM demonstrates that a 2-D domain-reversed structure has been achieved not only on the negative c-face of the crystal, but also across the whole thickness of the crystal.Comment: 17 pages, 4 figure

    Motion planning and control strategy of a cable-driven body weight support gait training robot

    Get PDF
    In this paper, a cable-driven body weight support gait training robot (C-BWSGTR) that provides patients with partial body weight support as well as a kind of stable gait training driving force was designed; this device enabled those patients to walk again. Firstly, the overall configuration of the C-BWSGTR was determined, and the structural composition and working principle of the robot were established. Secondly, the vector algebra method was applied to carry out the kinematic analysis and establish the mathematical model of the C-BWSGTR. The displacement of each cable during the patient gait training was also calculated. Thirdly, the motion planning of the C-BWSGTR was carried out in stages, using the time–phase distribution relationship based on an S-shaped speed curve. Meanwhile, the displacement, speed, and acceleration of each cable during the patient gait training were calculated and corresponding change curves were generated. Finally, a position servo composite control strategy for the C-BWSGTR was designed by analyzing the robot's dynamic characteristics of the forward channel transfer function. The simulation analysis and prototype experiment in this paper verified that the designed composite position servo control strategy can meet the requirements of the system with respect to stability and a fast response of the system to the loading command.</p

    STED microscopy reveals in-situ photoluminescence properties of single nanostructures in densely perovskite thin films.

    Full text link
    All-inorganic perovskite nanomaterials have attracted much attention recently due to their prominent optical performance and potential application for optoelectronic devices. The carriers dynamics of all-inorganic perovskites has been the research focus because the understanding of carriers dynamics process is of critical importance for improving the fluorescence conversion efficiency. While photophysical properties of excited carrier are usually measured at the macroscopic scale, it is necessary to probe the in-situ dynamics process at the nanometer scale and gain deep insights into the photophysical mechanisms and their localized dependence on the thin-film nanostructures. Stimulated emission depletion (STED) nanoscopy with super-resolution beyond the diffraction limit can directly provide explicit information at a single particle level or nanometer scale. Through this unique technique, we firstly study the in-situ dynamics process of single CsPbBr3 nanocrystals(NCs) and nanostructures embedded inside high-dense samples. Our findings reveal the different physical mechanisms of PL blinking and antibunching for single CsPbBr3 NCs and nanostructures that correlate with thin-film nanostructural features (e.g. defects, grain boundaries and carrier mobility). The insights gained into such nanostructure-localized physical mechanisms are critically important for further improving the material quality and its corresponding device performance
    corecore