124 research outputs found

    Microstructures and mechanical properties of pure tantalum processed by high-pressure torsion

    No full text
    A body-centred cubic (BCC) structure metal, tantalum, was processed by high- pressure torsion (HPT) at room temperature with different numbers of rotations. The microstructural evolution was studied by electron backscatter diffraction (EBSD). The grain sizes were significantly refined at the disk edge area in the early stages of deformation (N = 0.5) but tended to attain saturation after the numbers of rotations was increased to N = 5. As the deformation continued, some coarse grains appeared in the disk edge areas and it appeared that there was structural recovery at the expense of grain boundary migration in the tantalum during HPT processing. Microhardness measurements showed the hardness gradually evolved towards a more homogenized level across the disk surfaces as the numbers of rotations increased. The hardness level after N = 10 turns was slightly lower than after N = 5 turns, thereby indicating the occurrence of a recovery process after 5 turn

    The significance of self-annealing in two-phase alloys processed by high-pressure torsion

    No full text
    The Zn-22% Al eutectoid alloy and the Pb-62% Sn eutectic alloy were processed by high-pressure torsion (HPT) over a range of experimental conditions. Both alloys exhibit similar characteristics with significant grain refinement after processing by HPT but with a reduction in the hardness values by comparison with the initial unprocessed conditions. After storage at room temperature for a period of time, it is shown that the microhardness of both alloys gradually recovers to close to the initial unprocessed values. Electron backscatter diffraction (EBSD) measurements on the Pb-Sn alloy suggest that the self-recovery behaviour is correlated with the fraction of high-angle grain boundaries (HAGBs) after HPT processing. Thus, high fractions of HAGBs occur immediately after processing and this favours grain boundary migration and sliding which is important in the self-annealing and recovery process. Conversely, the relatively lower fractions of HAGBs occurring after annealing at room temperature are not so conducive to easy migration and slidin

    A critical examination of pure tantalum processed by high-pressure torsion

    No full text
    Tantalum, a common refractory metal with body-centred cubic (BCC) crystalline structure, was processed by high-pressure torsion (HPT) at room temperature through different numbers of rotations. Significant grain refinement and high strength were achieved with a reduction in grain size from ?60 ?m to ?160 nm and an increase in strength from ?200 to >1300 MPa. Hardness measurements revealed a high level of homogeneity after 10 turns of HPT but the hardness after 10 turns was slightly lower than after 5 turns indicating the occurrence of some recovery. Tensile testing at a strain rate of 1.0×10?3 s?1 gave high strengths of ?1200 MPa but little or no ductility after processing through 1, 5 and 10 turns. The introduction of a short-term (15 min) anneal immediately after HPT processing led to significant ductility in all samples and a reasonable level of strength at ?800 MPa

    Propofol exhibits inhibitory effect towards human liver microsomes (HLMs)- catalyzed glucuronidation of thienorphine

    Get PDF
    Drug-drug interaction (DDI) is a challenging problem in the process of drug utilization. Inhibition of glucuronidation reaction of drugs is a major reason for DDI. The aim of the present study is to predict propofol-thienorphine interaction from the perspective of propofol’s inhibition towards thienorphine glucuronidation. The human liver microsomes (HLMs) incubation system supplemented with uridine 5’-diphosphoglucuronic acid (UDPGA) was used. The results showed that propofol inhibited HLMscatalyzed thienorphine glucuronidation in a concentration-dependent manner. Both Dixon plot and Lineweaver-Burk plot showed that the inhibition of thienorphine glucuronidation by propofol was best fit to competitive inhibition, and the second plot using slopes from Lineweaver-Burk plot versus thienorphine concentration was used to determine the inhibition kinetic parameter (Ki ) value to be 365.9 μM. Whether the in vitro inhibition of propofol towards thienorphine glucuronidation can induce the in vivo propofolthienorphine interaction might be influenced by many factors, including various pharmacokinetic factors influencing the in vivo concentration of propofol. These data should be carefully explained due to complicated factors influencing the in vitro-in vivo extrapolation (IVIVE) results.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Spinal Astrocytic Activation Is Involved in a Virally-Induced Rat Model of Neuropathic Pain

    Get PDF
    Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN

    Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease

    Get PDF
    3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD
    corecore