156 research outputs found

    Fat-mass and obesity-associated gene polymorphisms and weight gain after risperidone treatment in first episode schizophrenia

    Get PDF
    BACKGROUND: Obesity induced by antipsychotics severely increases the risk of many diseases and significantly reduces quality of life. Genome Wide Association Studies has identified fat-mass and obesity-associated (FTO) gene associated with obesity. The relationship between the FTO gene and drug-induced obesity is unclear. METHOD: Two hundred and fifty drug naive, Chinese Han patients with first-episode schizophrenia were enrolled in the study, and genotyped for four single nucleotide polymorphisms (SNPs rs9939609, rs8050136, rs1421085 and rs9930506) by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Body weight and body mass index (BMI) were measured at baseline and six months after risperidone treatment. RESULTS: At baseline, body weight and BMI of TT homozygotes were lower than those of A allele carriers in rs9939609; body weight of AA homozygotes was higher than those of G allele carriers in rs9930506 (p\u27s \u3c 0.05). After 6 months of risperidone treatment, body weight and BMI of TT homozygotes were lower than those of A allele carriers in rs9939609 (p\u27s \u3c 0.01); body weight and BMI of CC homozygotes were lower than those of A allele carriers in rs8050136 (p\u27s \u3c 0.05); body weight of AA homozygotes was higher than those of G allele carriers in rs9930506 (p\u27s \u3c 0.05). After controlling for age, gender, age of illness onset, disease duration, weight at baseline and education, weight gain of TT homozygotes at 6 months remained to be lower than those of A allele carriers in rs9939609 (p \u3c 0.01); weight gain of CC homozygotes at 6 months was lower than those of A allele carriers in rs8050136 (p = 0.01). Stepwise multiple regression analysis suggested that, among 4 SNPs, rs9939609 was the strongest predictor of weight gain after 6 months of risperidone treatment (p = 0.001). CONCLUSIONS: The FTO gene polymorphisms, especially rs9939609, seem to be related to weight gain after risperidone treatment in Chinese Han patients with first episode schizophrenia

    Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators.

    Get PDF
    This paper studies the synchronization in two mechanical oscillators coupled by impacts which can be considered as a class of state-dependent impulsively coupled oscillators. The two identical oscillators are harmonically excited in a counter phase, and the synchronous (anti-phase synchronization) and the asynchronous motions are considered. One- and two-parameter bifurcations of the system have been studied by varying the amplitude and the frequency of external excitation. Numerical simulations show that the system could exhibit complex phenomena, including symmetry and asymmetry periodic solutions, quasi-periodic solutions and chaotic solutions. In particular, the regimes in anti-phase synchronization are identified, and it is found that the symmetry-breaking bifurcation plays an important role in the transition from synchronous to asynchronous motion

    Automated diagnosis of pancreatic mucinous and serous cystic neoplasms with modality-fusion deep neural network using multi-modality MRIs

    Get PDF
    BackgroundPancreatic cystic neoplasms are increasingly diagnosed with the development of medical imaging technology and people’s self-care awareness. However, two of their sub-types, serous cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN), are often misclassified from each other. Because SCN is primarily benign and MCN has a high rate of malignant transformation. Distinguishing SCN and MCN is challenging and essential.PurposeMRIs have many different modalities, complete with SCN and MCN diagnosis information. With the help of an artificial intelligence-based algorithm, we aimed to propose a multi-modal hybrid deep learning network that can efficiently diagnose SCN and MCN using multi-modality MRIs.MethodsA cross-modal feature fusion structure was innovatively designed, combining features of seven modalities to realize the classification of SCN and MCN. 69 Patients with multi-modalities of MRIs were included, and experiments showed performances of every modality.ResultsThe proposed method with the optimized settings outperformed all other techniques and human radiologists with high accuracy of 75.07% and an AUC of 82.77%. Besides, the proposed disentanglement method outperformed other fusion methods, and delayed contrast-enhanced T1-weighted MRIs proved most valuable in diagnosing SCN and MCN.ConclusionsThrough the use of a contemporary artificial intelligence algorithm, physicians can attain high performance in the complex challenge of diagnosing SCN and MCN, surpassing human radiologists to a significant degree

    Induced Ferromagnetic Order of Graphdiyne Semiconductors by Introducing a Heteroatom

    Get PDF
    To date, the realization of ferromagnetism in two-dimensional carbon semiconductors containing only sp electrons has remained a challenge for spintronics. Here, we utilize the atomic-level functionalization strategy to obtain three carbon matrix materials by accurately introducing different light elements (H, F, Cl) into graphdiyne's benzene ring. Their magnetic and conductive characteristics are thoroughly clarified via physical property measurements and DFT calculations. All of these carbon matrix materials retain their excellent intrinsic semiconductor properties. In particular, compared with the paramagnetism of HsGDY and ClsGDY, a robust ferromagnetic ordering as well as high mobility of up to 320 cm2 V−1 s −1 was observed in FsGDY, successfully realizing a ferromagnetic semiconductor. Through theory calculations, this unique ferromagnetic coupling can be attributed to the most striking charge transfer between carbon and fluorine atoms, demonstrating the advantages of controllable fabrication. These results not only reveal the important role of atomic-scale doping/substitution in optimizing graphdiyne material but also create new possibilities for manipulating spins and charges in 2D carbon materials.This study was supported by the National Natural Science Foundation of China (51802324, 21790050, 21790051, 51822208, 21771187), the Frontier Science Research Project (QYZDB-SSW-JSC052) of the Chinese Academy of Sciences, and the Taishan Scholars Program of Shandong Province (tsqn201812111)

    Genome-Wide Identification, Sequence Variation, and Expression of the Glycerol-3-Phosphate Acyltransferase (GPAT) Gene Family in Gossypium

    Get PDF
    Cotton is an economically important crop grown for natural fiber and seed oil production. Cottonseed oil ranks third after soybean oil and colza oil in terms of edible oilseed tonnage worldwide. Glycerol-3-phosphate acyltransferase (GPAT) genes encode enzymes involved in triacylglycerol biosynthesis in plants. In the present study, 85 predicted GPAT genes were identified from the published genome data in Gossypium. Among them, 14, 16, 28, and 27 GPAT homologs were identified in G. raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. Phylogenetic analysis revealed that a total of 108 GPAT genes from cotton, Arabidopsis and cacao could be classified into three groups. Furthermore, through comparison, the gene structure analyses indicated that GPAT genes from the same group were highly conserved between Arabidopsis and cotton. Segmental duplication could be the major driver for GPAT gene family expansion in the four cotton species above. Expression patterns of GhGPAT genes were diverse in different tissues. Most GhGPAT genes were induced or suppressed after salt or cold stress in Upland cotton. Eight GhGPAT genes were co-localized with oil and protein quantitative trait locus (QTL) regions. Thirty-two single nucleotide polymorphisms (SNPs) were detected from 12 GhGPAT genes, sixteen of which in nine GhGPAT genes were classified as synonymous, and sixteen SNPs in ten GhGPAT genes non-synonymous. Two SNP markers of the GhGPAT16 and GhGPAT26 genes were significantly correlated with cotton oil content in one of the three field tests. This study shed lights on the molecular evolutionary properties of GPAT genes in cotton, and provided reference for improvement of cotton response to abiotic stress and the genetic improvement of cotton oil content

    Genome-Scale Analysis of the WRI-Like Family in Gossypium and Functional Characterization of GhWRI1a Controlling Triacylglycerol Content

    Get PDF
    Cotton (Gossypium spp.) is the most important natural fiber crop and the source of cottonseed oil, a basic by-product after ginning. AtWRI1 and its orthologs in several other crop species have been previously used to increase triacylglycerols in seeds and vegetative tissues. In the present study, we identified 22, 17, 9, and 11 WRI-like genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. This gene family was divided into four subgroups, and a more WRI2-like subfamily was identified compared with dicotyledonous Arabidopsis. An analysis of chromosomal distributions revealed that the 22 GhWRI genes were distributed on eight At and eight Dt subgenome chromosomes. Moreover, GhWRI1a was highly expressed in ovules 20–35 days after anthesis and was selected for further functional analysis. Ectopic expression of GhWRI1a rescued the seed phenotype of a wri1-7 mutant and increased the oil content of Arabidopsis seeds. Our comprehensive genome-wide analysis of the cotton WRI-like gene family lays a solid foundation for further studies

    Prevalence of cardiovascular disease and risk factors in a rural district of Beijing, China: a population-based survey of 58,308 residents

    Get PDF
    Abstract Background Cardiovascular disease (CVD) is the leading cause of global disease burden. Although stroke was thought to be more prevalent than coronary heart disease (CHD) in Chinese, the epidemic pattern might have been changed in some rural areas nowadays. This study was to estimate up-to-date prevalence of CVD and its risk factors in rural communities of Fangshan District, Beijing, China. Methods A cross-sectional population survey was carried out by stratified cluster sampling. A total of 58,308 rural residents aged over 40 years were surveyed by face-to-face interview and physical examination during 2008 and 2010. The standardized prevalence was calculated according to adult sample data of China's 5th Population Census in 2000, and the adjusted prevalence odds ratio (POR) was calculated for the association of CHD/stroke with its cardiovascular risk factors in multivariate logistic regression models. Results Age- and sex-standardized prevalence was 5.6% for CHD (5.2% in males and 5.9% in females), higher than the counterpart of 3.7% (4.7% in males and 2.6% in females) for stroke. Compared with previous studies, higher prevalence of 7.7%, 47.2%, 53.3% in males and 8.2%, 44.8%, 60.7% in females for diabetes, hypertension and overweight/obesity were presented accordingly. Moreover, adjusted POR (95% confidence interval) of diabetes, obesity, stage 1 and stage 2 hypertension for CHD as 2.51 (2.29 to 2.75), 1.53 (1.38 to 1.70), 1.13 (1.02 to 1.26) and 1.35 (1.20 to 1.52), and for stroke as 2.24 (1.98 to 2.52), 1.25 (1.09 to 1.44), 1.44 (1.25 to 1.66) and 1.70 (1.46 to 1.98) were shown respectively in the multivariate logistic regression models. Conclusions High prevalence of CVD and probably changed epidemic pattern in rural communities of Beijing, together with the prevalent cardiovascular risk factors and population aging, might cause public health challenges in rural Chinese population
    • …
    corecore