103 research outputs found

    Enhancing Digestibility and Ethanol Yield of Populus Wood via Expression of an Engineered Monolignol 4-O-Methyltransferase

    Get PDF
    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications

    Gut microbiome dysbiosis in men who have sex with men increases HIV infection risk through immunity homeostasis alteration

    Get PDF
    ObjectivesRecent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system.MethodsWe searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity.ResultsThe results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors.ConclusionIn conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility

    A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs

    Get PDF
    Quasi‐2D Ruddlesden‐Popper perovskites receive tremendous attention for application in light‐emitting diodes (LEDs). However, the role of organic ammonium spacers on perovskite film has not been fully‐understood. Herein, a spacer cation assisted perovskite nucleation and growth strategy, where guanidinium (GA+) spacer is introduced into the perovskite precursor and at the interface between the hole transport layer (HTL) and the perovskite, to achieve dense and uniform perovskite films with enhanced optical and electrical performance is developed. A thin GABr interface pre‐formed on HTL provides more nucleation sites for perovskite crystal; while the added GA+ in perovskite reduces the crystallization rate due to strong hydrogen bonding interacts with intermediates, which promotes the growth of enhanced‐quality quasi‐2D perovskite films. The ionized ammonium group ( NH3+) of GA+ also favors formation of polydisperse domain distribution, and amine or imine ( NH2 or NH) group interact with perovskite defects through coordination bonding. The spacer cation assisted nucleation and growth strategy is advantageous for producing efficient and high‐luminance perovskite LEDs, with a peak external quantum efficiency of over 20% and a luminance up to 100 000 cd m−2. This work can inform and underpin future development of high‐performance perovskite LEDs with concurrent high efficiency and brightness

    Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes

    Full text link
    Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays

    Intermolecular CT excitons enable nanosecond excited-state lifetimes in NIR-absorbing non-fullerene acceptors for efficient organic solar cells

    Full text link
    State-of-the-art Y6-type molecular acceptors exhibit nanosecond excited-state lifetimes despite their low optical gaps (~1.4 eV), thus allowing organic solar cells (OSCs) to achieve highly efficient charge generation with extended near-infrared (NIR) absorption range (up to ~1000 nm). However, the precise molecular-level mechanism that enables low-energy excited states in Y6-type acceptors to achieve nanosecond lifetimes has remained elusive. Here, we demonstrate that the distinct packing of Y6 molecules in film leads to a strong intermolecular charge-transfer (iCT) character of the lowest excited state in Y6 aggregates, which is absent in other low-gap acceptors such as ITIC. Due to strong electronic couplings between the adjacent Y6 molecules, the iCT-exciton energies are greatly reduced by up to ~0.25 eV with respect to excitons formed in separated molecules. Importantly, despite their low energies, the iCT excitons have reduced non-adiabatic electron-vibration couplings with the electronic ground state, thus suppressing non-radiative recombination and allowing Y6 to overcome the well-known energy gap law. Our results reveal the fundamental relationship between molecular packing and nanosecond excited-state lifetimes in NIR-absorbing Y6-type acceptors underlying the outstanding performance of Y6-based OSCs

    Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells

    Get PDF
    Funder: HKU | University Research Committee, University of Hong Kong (HKU Research Committee); doi: https://doi.org/10.13039/501100003802Abstract: Organic solar cells based on non-fullerene acceptors can show high charge generation yields despite near-zero donor–acceptor energy offsets to drive charge separation and overcome the mutual Coulomb attraction between electron and hole. Here, we use time-resolved optical spectroscopy to show that free charges in these systems are generated by thermally activated dissociation of interfacial charge-transfer states that occurs over hundreds of picoseconds at room temperature, three orders of magnitude slower than comparable fullerene-based systems. Upon free electron–hole encounters at later times, both charge-transfer states and emissive excitons are regenerated, thus setting up an equilibrium between excitons, charge-transfer states and free charges. Our results suggest that the formation of long-lived and disorder-free charge-transfer states in these systems enables them to operate closely to quasi-thermodynamic conditions with no requirement for energy offsets to drive interfacial charge separation and achieve suppressed non-radiative recombination

    Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma

    Get PDF
    BackgroundUveal melanoma (UVM) is the most common primary intraocular malignancy in adults and is highly metastatic, resulting in a poor patient prognosis. Sphingolipid metabolism plays an important role in tumor development, diagnosis, and prognosis. This study aimed to establish a reliable signature based on sphingolipid metabolism genes (SMGs), thus providing a new perspective for assessing immunotherapy response and prognosis in patients with UVM.MethodsIn this study, SMGs were used to classify UVM from the TCGA-UVM and GEO cohorts. Genes significantly associated with prognosis in UVM patients were screened using univariate cox regression analysis. The most significantly characterized genes were obtained by machine learning, and 4-SMGs prognosis signature was constructed by stepwise multifactorial cox. External validation was performed in the GSE84976 cohort. The level of immune infiltration of 4-SMGs in high- and low-risk patients was analyzed by platforms such as CIBERSORT. The prediction of 4-SMGs on immunotherapy and immune checkpoint blockade (ICB) response in UVM patients was assessed by ImmuCellAI and TIP portals.Results4-SMGs were considered to be strongly associated with the prognosis of UVM and were good predictors of UVM prognosis. Multivariate analysis found that the model was an independent predictor of UVM, with patients in the low-risk group having higher overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores had good prognostic power. The high-risk group showed better results when receiving immunotherapy.Conclusions4-SMGs signature and nomogram showed excellent predictive performance and provided a new perspective for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology studies

    Corporate Social Responsibility, the Atmospheric Environment, and Technological Innovation Investment

    No full text
    Based on the stakeholder theory, this paper takes the 2016 data of China’s A-share listed enterprises as a sample. It then uses SPSS 22 to conduct statistical analyses on the sample data to study the relationship between corporate social responsibility (CSR) and technological innovation investment, particularly the role of the atmospheric environment in regulating the relationship between the two. This paper shows that there is a significant positive correlation between CSR and an enterprise’s technological innovation investment. Further research has found that in the case of a poor atmospheric environment, the government’s environmental regulations have increased the operating costs of enterprises and weakened the intensity of technological innovation investment. However, when there is public pressure, CSR will improve. Consequently, the correlation between CSR and technological innovation investment is weak. In the case of a good atmospheric environment, enterprises do not need to increase their operating costs. To establish a good image and increase profitability, enterprises lean towards fulfilling their social responsibilities and enhancing their investment in technological innovation. This will also boost the positive correlation between CSR and technological innovation investment

    Development Model of Rural Industrialization in China

    No full text
    With the implementation of the policy of expanding domestic demand, farmers have become the main body of rural economy and rural industrialization. Development of rural industrialization promotes the development of rural economy in China, effectively transfers the surplus labor force in rural areas, continuously optimizes the rural economic structure, improves the living standard of farmers, and has made important contributions to the stability and development of economy and society in China. This paper introduces the connotation of rural industrialization, classifies it into three modes according to the farmer’s investment and economic development, such as exogenous model of rural industrialization, endogenous model of rural industrialization and integrated model of rural industrialization. Though rural industrialization has obtained great achievements, there are still some problems restricting the development of rural economy in China. For instance, cognitive bias leads to the slow pace of rural industrialization; rural industry develops rapidly but its efficiency is low; intensive degree of economic growth is still very low; ability of independent innovation is weak; there are obvious contradiction between the constraints of resource and environment and the acceleration of industrialization; and development gap between regions has further widened. Therefore, policy suggestions are put forward. Firstly, continue to strengthen policy support. Secondly, take a new road of rural industrialization. Thirdly, strengthen the construction of human resources in rural areas. Fourthly, actively guide the investment behavior of farmers. And finally, support the specialty cooperative of farmers and the leading enterprises, which has certain reference significance to enhance agricultural benefit, farmers’ income, rural development and modern agriculture

    Basement-Membrane-Related Gene Signature Predicts Prognosis in WHO Grade II/III Gliomas

    No full text
    Gliomas that are classified as grade II or grade III lesions by the World Health Organization (WHO) are highly aggressive, and some may develop into glioblastomas within a short period, thus portending the conferral of a poor prognosis for patients. Previous studies have implicated basement membrane (BM)-related genes in glioma development. In this study, we constructed a prognostic model for WHO grade II/III gliomas in accordance with the risk scores of BM-related genes. Differentially expressed genes (DEGs) in the glioma samples relative to normal samples were screened from the GEO database, and five prognostically relevant BM-related genes, including NELL2, UNC5A, TNC, CSPG4, and SMOC1, were selected using Cox regression analyses for the risk score model. The median risk score was calculated, based on which high- and low-risk groups of patients were generated. The clinical information, pathological information, and risk group were combined to establish a prognostic nomogram. Both the nomogram and risk score model performed well in the independent CGGA cohort. Gene set enrichment analysis (GSEA) and immune profile, drug sensitivity, and tumor mutation burden (TMB) analyses were performed in the two risk groups. A significant enrichment of ‘Autophagy–other’, ‘Collecting duct acid secretion’, ‘Glycosphingolipid biosynthesis–lacto and neolacto series’, ‘Valine, leucine, and isoleucine degradation’, ‘Vibrio cholerae infection’, and other pathways were observed for patients with high risk. In addition, higher proportions of monocytes and resting CD4 memory T cells were observed in the low- and high-risk groups, respectively. In conclusion, the BM-related gene risk score model can guide the clinical management of WHO grade II and III gliomas
    • 

    corecore