3,499 research outputs found

    Incorporating a Local Binary Fitting Model into a Maximum Regional Difference Model for Extracting Microscopic Information under Complex Conditions

    Get PDF
    This paper presents a novel region-based method for extracting useful information from microscopic images under complex conditions. It is especially used for blood cell segmentation and statistical analysis. The active model detects several inner and outer contours of an object from its background. The method incorporates a local binary fitting model into a maximum regional difference model. It utilizes both local and global intensity information as the driving forces of the contour model on the principle of the largest regional difference. The local and global fitting forces ensure that local dissimilarities can be captured and globally different areas can be segmented, respectively. By combining the advantages of local and global information, the motion of the contour is driven by the mixed fitting force, which is composed of the local and global fitting term in the energy function. Experiments are carried out in the laboratory, and results show that the novel model can yield good performances for microscopic image analysis

    Dual-emission ratio fluorescence for selective and sensitive detection of ferric ions and ascorbic acid based on one-pot synthesis of glutathione protected gold nanoclusters

    Get PDF
    A fluorometric method was proposed for the determination of Fe3+and ascorbic acid (AA) based on blue and red dual fluorescence emissions of glutathione (GSH) stabilized-gold nanoclusters (AuNCs). AuNCs were synthesized from GSH and tetrachloroauric acid. The fluorescence peaks of AuNCs were at 425 nm and 585 nm, respectively. In the presence of Fe3+, the fluorescence peak at 425 nm can be enhanced and that at 585 nm can be quenched. There is a good linear relationship between the fluorescence intensity ratio for the 425 and 585 nm peaks (F425/F585) and the concentration of Fe3+in the range of 0.75-125 µM. However, when AA was added to the AuNCs-Fe3+system, the value ofF425/F585decreased consistently with the concentration of AA in the range of 0.25-35 µM. The limit of detection for Fe3+and AA was 227 and 75.8 nM, respectively. The interaction between AuNCs and Fe3+can induce the ligand-metal charge transfer (LMCT) effect leading to the fluorescence increment at 425 nm, while AA can reduce Fe3+to Fe2+. The production of Fe2+can not enhance or quench the fluorescence of AuNCs. By comparison with previous literature, the AuNCs prepared here show two fluorescence peaks without additional fluorescence labels. Furthermore, the method was successfully applied in the determination of Fe3+and AA in some real samples, such as water, human serum and tablets

    Uptake and transport of a novel anticancer drug-delivery system: lactosyl-norcantharidin-associated N-trimethyl chitosan nanoparticles across intestinal Caco-2 cell monolayers

    Get PDF
    In this paper, novel liver-targeting nanoparticles (NPs), lactosyl-norcantharidin (Lac-NCTD)-associated N-trimethyl chitosan (TMC) NPs (Lac-NCTD-TMC-NPs), were prepared using ionic cross-linkage. The physical properties, particle size, and encapsulation efficiency of the nanoparticles were then investigated. The continuous line of heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2) cell monolayer model was used to study the transport mechanism of Lac-NCTD, and the effects of factors such as time, temperature, pH level, drug concentration, enhancers, and inhibitors. This model was also used to indicate the differences among Lac-NCTD, Lac-NCTD-associated chitosan NPs (Lac-NCTD-CS-NPs), and Lac-NCTD-TMC- NPs in the absorption and transportation of membranes. Drug concentration levels were measured using high-performance liquid chromatography. Active transport and paracellular transport were suggested to be both the primary and secondary mechanisms for Lac-NCTD absorption, respectively. Lac-NCTD uptake and absorption were not controlled by pH levels, but were positively correlated to uptake time, and negatively correlated to temperature. The basolateral to apical apparent permeability coefficients (Papps) were higher than those of the apical to basolateral values. The inhibitor of P-glycoprotein and the multidrug resistance-associated protein 2 significantly enhanced the uptake amount of Lac-NCTD. Compared with Lac-NCTD, Lac-NCTD-CS-NPs and Lac-NCTD-TMC-NPs significantly enhanced drug absorption. Additionally, the latter exhibited stronger action. Lac-NCTD-NPs could penetrate the plasma membrane of Caco-2 cells and translocate into the cytoplasm and even into the nucleus. Nanoparticles were uptaken into Caco-2 cells through the endocytosis pathway

    Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells and their reprogramming in mouse chimeras

    Get PDF
    Stem cells can be derived from the embryo (embryonic stem cells, ESCs), from adult tissues (adult stem cells, ASCs), and by induction of fibroblasts (induced pluripotent stem cells, iPSs). Ethical problems, immunological rejection, and difficulties in obtaining human tissues limit the use of ESCs in clinical medicine. Induced pluripotent stem cells are difficult to maintain in vitro and carry a greater risk of tumor formation. Furthermore, the complexity of maintenance and propagation is especially difficult in the clinic. Adult stem cells can be isolated from several adult tissues and present the possibility of self-transplantation for the clinical treatment of a variety of human diseases. Recently, several ASCs have been successfully isolated and cultured in vitro, including hematopoietic stem cells (HSCs) , mesenchymal stem cells (MSCs), epidermis stem cells, neural stem cells (NSCs), adipose-derived stem cells (ADSCs), islet stem cells, and germ line stem cells. Human mesenchymal stem cells originate mainly from bone marrow, cord blood, and placenta, but epidermis-derived MSCs have not yet been isolated. We isolated small spindle-shaped cells with strong proliferative potential during the culture of human epidermis cells and designed a medium to isolate and propagate these cells. They resembled MSCs morphologically and demonstrated pluripotency in vivo; thus, we defined these cells as human epidermis-derived mesenchymal stem cell-like pluripotent cells (hEMSCPCs). These hEMSCPCs present a possible new cell resource for tissue engineering and regenerative medicine

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring

    Full text link
    [EN] In this study, we investigated plastic optical fiber (POF) pressure sensors embedded in mattresses to measure respiration and heart rate for sleep performance monitoring. The signal is amplified in the circuit using a two stage amplification scheme to collect weak respiration and heart rate signals while an algorithm was designed to obtain respiration and heart rate. We also propose a good reliability cutting-POF technology which can be used to improve pressure sensitivity. The experimental results indicate that the mattress can distinguish four behavioral states related to sleep (on bed, lying, moving and leaving bed) and can detect respiration and heart rate values in different positions and postures. Validation experiments on 10 participants showed that absolute error was less than one breath per minute and two beats per minute, making our approach suitable for household sleeping monitoring.National Natural Science Foundation of China (62003046) ; National Defense Basic Scientific Research Program of China (JCKY2018110B011) ; The Spanish Ministerio de Ciencia, Innovacion y Universidades RTI2018-101658-B-I00 FOCAL Project; Guangdong Recruitment Program of Foreign Experts (2020A1414010393) ; Guangdong Basic and Applied Basic Research Foundation (2021A1515011997) ; C. Marques acknowledges Fundacao para a Ciencia e a Tecnologia (FCT) through the CEECIND/00034/2018 (iFish project) and this work was developed within the scope of the project i3N, UIDB/50025/2020 &UIDP/50025/2020, financed by national funds through the FCT/MEC.Han, P.; Li, L.; Zhang, H.; Guan, L.; Marques, C.; Savovic, S.; Ortega Tamarit, B.... (2021). Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring. Optical Fiber Technology. 64:1-8. https://doi.org/10.1016/j.yofte.2021.102541186
    • …
    corecore