255 research outputs found

    Methyl 3-(4-chloro­phen­yl)-2-(1,3-dimethyl-2,5-dioxo-4-phenyl­imidazolidin-4-yl)-3-oxopropano­ate

    Get PDF
    The title compound, C21H19ClN2O5, is a tetra­substituted hydantoin derivative which contains an imidazolidine-2,4-dione core. The dihedral angle between the aromatic rings is 64.53 (14)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonding is found. An intra­molecular C—H⋯O inter­action also occurs

    8b,8c-Diphenyl-2,6-bis(4-pyridyl­meth­yl)­perhydro-2,3a,4a,6,7a,8a-hexa­aza­cyclo­penta­[def]fluorene-4,8-dithione chloro­form solvate

    Get PDF
    In the thio­glycoluril system of the title compound, C32H30N8S2·CHCl3, the two pyridine rings are roughly parallel, forming a dihedral angle of 7.2 (1)°, and the distance between the centroids of the two phenyl rings is 3.951 (5) Å. The chloro­form solvent mol­ecule is linked to the main mol­ecule via a weak C—H⋯N hydrogen bond

    Overexpression of candidate tumor suppressor ECRG4 inhibits glioma proliferation and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ECRG4 has been shown to be a candidate tumor suppressor in several tumors, but its role in glioma remains poorly understood. In this study, we examined the mRNA expression of ECRG4 and investigated its biological role in glioma cells.</p> <p>Methods</p> <p>Real-time PCR was used to examine expression of ECRG4 in gliomas and their matched brain tissues. The effect of ECRG4 expression on cell proliferation, invasion, and migration was investigated in human U251 glioma cells. Finally, the regulation of transcription factor NF-kB by ECRG4 was evaluated by western blotting.</p> <p>Results</p> <p>Of the 10 paired samples analyzed, 9 glioma tissues displayed the decreased expression of ECRG4 compared to matched normal brain tissues. Cells transfected with ECRG4 showed significantly decreased cell proliferation as evaluated by MTT and colony formation assays. Furthermore, overexpression inhibited cell migration and invasion in transwell and Boyden chamber experiments and retarded the cell cycle progression from G1 to S phase by FACSCaliber cytometry. Protein levels of nuclear transcription factor NF-kB, which is involved in cell proliferation, inversely correlated with ECRG4 expression.</p> <p>Conclusion</p> <p>Our data suggest that ECRG4 serves as a tumor suppressor in glioma.</p

    Interactive Effects of Water and Fertilizer on Yield, Soil Water and Nitrate Dynamics of Young Apple Tree in Semiarid Region of Northwest China

    Get PDF
    Exploring the interactive effect of water and fertilizer on yield, soil water and nitrate dynamics of young apple tree is of great importance to improve the management of irrigation and fertilization in the apple-growing region of semiarid northwest China. A two-year pot experiment was conducted in a mobile rainproof shelter of the water-saving irrigation experimental station in Northwest A&F University, and the investigation evaluated the response of soil water and fertilizer migration, crop water productivity (CWP), irrigation water use efficiency (IWUE), partial factor productivity (PFP) of young apple tree to different water and fertilizer regimes (four levels of soil water: 75%–85%, 65%–75%, 55%–65% and 45%–55% of field capacity, designated W1, W2, W3 and W4, respectively; three levels of N-P2O5-K2O fertilizer, 30-30-10, 20-20-10 and 10-10-10 g plant−1, designated F1, F2 and F3, respectively). Results showed that F1W1, F2W1 and F3W1 had the highest average soil water content at 0~90 cm compared with the other treatments. When fertilizer level was fixed, the average soil water content was gradually increased with increasing irrigation amount. For W1, W2, W3 and W4, high levels of water content were mainly distributed at 50~80 cm, 40~70 cm, 30~50 cm and 10~30 cm, respectively. There was no significant difference in soil water content at all fertilizer treatments. However, F1 and F2 significantly increased soil nitrate-N content by 146.3%~246.4% and 75.3%~151.5% compared with F3. The highest yield appeared at F1W1 treatment, but there was little difference between F1W1 and F2W2 treatment. F2W2treatment decreased yield by 7.5%, but increased IWUE by 11.2% compared with F1W1 treatment. Meanwhile, the highest CWP appeared at F2W2 treatment in the two years. Thus, F2W2 treatment (soil moisture was controlled in 65–75% of field capacity, N-P2O5-K2O were controlled at 20-20-10 g·tree−1) reached the best water and fertilizer coupling mode and it was the optimum combinations of water and fertilizer saving

    Spatial variations in soil-water carrying capacity of three typical revegetation species on the Loess Plateau, China

    Get PDF
    Re-vegetation is a necessary control measure of soil erosion in the Loess Plateau. However, excessive re-vegetation can aggravate soil water shortage, which can in turn threaten the health and services of restored ecosystems. An optimal plant cover or biomass (i.e., soil-water carrying capacity for vegetation, SWCCV) is important for regional water balance, soil protection and vegetation sustainability. The objective of this study was to determine the spatial distribution of SWCCV for three non-native tree (Robinia pseudoacaia), shrub (Caragana korshinskii) and grass (Medicago sativa) species used in the re-vegetation of the Loess Plateau. The dynamics of actual evapotranspiration (AET), net primary productivity (NPP) and leaf area index (LAI) were simulated using a modified Biome-BGC (Bio-Geochemical Cycles) model. Soil and physiological parameters required by the model were validated using field-observed AET for the three plant species at six sites in the study area. The validated model was used to simulate the dynamics of AET, NPP and LAI for the three plant species at 243 representative sites in the study area for the period 1961–2014. The results show that spatial distributions of mean AET, NPP and LAI generally increased from northwest to southeast, much the same as mean annual precipitation (MAP) gradient. In terms of maximum LAI, the ranges of optimal plant cover were 1.1–3.5 for R. pseudoacaia, 1.0–2.4 for C. korshinskii and 0.7–3.0 for M. sativa. The corresponding SWCCV, expressed as NPP were 202.4–616.5, 83.7–201.7 and 56.3–253.0 g C m−2 yr−1. MAP, mean annual temperature, soil texture and elevation were the main variables driving SWCCV under the plant species; explaining over 86% of the spatial variations in mean NPP in the study area. Further re-vegetation therefore needs careful reconsideration under the prevailing climatic, soil and topographic conditions. The results of the study provide a re-vegetation threshold to guide future re-vegetation activities and to ensure a sustainable eco-hydrological environment in the Loess Plateau

    Stark Effects of Rydberg Excitons in a Monolayer WSe2 P-N Junction

    Full text link
    The enhanced Coulomb interaction in two-dimensional (2D) semiconductors leads to the tightly bound electron-hole pairs known as excitons. The large binding energy of excitons enables the formation of Rydberg excitons with high principal quantum numbers (n), analogous to Rydberg atoms. Rydberg excitons possess strong interactions among themselves, as well as sensitive responses to external stimuli. Here, we probe Rydberg exciton resonances through photocurrent spectroscopy in a monolayer WSe2 p-n junction formed by a split-gate geometry. We show that an external in-plane electric field not only induces a large Stark shift of Rydberg excitons up to quantum principal number n=3 but also mixes different orbitals and brightens otherwise dark states such as 3p and 3d. Our study provides an exciting platform for engineering Rydberg excitons for new quantum states and quantum sensing

    Effect of Pt vacancies on magnetotransport of Weyl semimetal candidate GdPtSb epitaxial films

    Full text link
    We examine the effects of Pt vacancies on the magnetotransport properties of Weyl semimetal candidate GdPtSb films, grown by molecular beam epitaxy on c-plane sapphire. Rutherford backscattering spectrometry (RBS) and x-ray diffraction measurements suggest that phase pure GdPtx_{x}Sb films can accommodate up to 15%15\% Pt vacancies (x=0.85x=0.85), which act as acceptors as measured by Hall effect. Two classes of electrical transport behavior are observed. Pt-deficient films display a metallic temperature dependent resistivity (dρ\rho/dT>>0). The longitudinal magnetoresistance (LMR, magnetic field B\mathbf{B} parallel to electric field E\mathbf{E}) is more negative than transverse magnetoresistance (TMR, BE\mathbf{B} \perp \mathbf{E}), consistent with the expected chiral anomaly for a Weyl semimetal. The combination of Pt-vacancy disorder and doping away from the expected Weyl nodes; however, suggests conductivity fluctuations may explain the negative LMR rather than chiral anomaly. Samples closer to stoichiometry display the opposite behavior: semiconductor-like resistivity (dρ\rho/dT<<0) and more negative transverse magnetoresistance than longitudinal magnetoresistance. Hysteresis and other nonlinearities in the low field Hall effect and magnetoresistance suggest that spin disorder scattering, and possible topological Hall effect, may dominate the near stoichiometric samples. Our findings highlight the complications of transport-based identification of Weyl nodes, but point to possible topological spin textures in GdPtSb
    corecore