443 research outputs found

    Coupling Diffusion and Finite Deformation in Phase Transformation Materials

    Full text link
    We present a multiscale theoretical framework to investigate the interplay between diffusion and finite lattice deformation in phase transformation materials. In this framework, we use the Cauchy-Born Rule and the Principle of Virtual Power to derive a thermodynamically consistent theory coupling the diffusion of a guest species (Cahn-Hilliard type) with the finite deformation of host lattices (nonlinear gradient elasticity). We adapt this theory to intercalation materials--specifically Li1−2_{1-2}Mn2_2O4_4--to investigate the delicate interplay between Li-diffusion and the cubic-to-tetragonal deformation of lattices. Our computations reveal fundamental insights into the microstructural evolution pathways under dynamic discharge conditions, and provide quantitative insights into the nucleation and growth of twinned microstructures during intercalation. Additionally, our results identify regions of stress concentrations (e.g., at phase boundaries, particle surfaces) that arise from lattice misfit and accumulate in the electrode with repeated cycling. These findings suggest a potential mechanism for structural decay in Li2_2Mn2_2O4_4. More generally, we establish a theoretical framework that can be used to investigate microstructural evolution pathways, across multiple length scales, in first-order phase transformation materials.Comment: 41 pages, 11 figure

    Prediction of the dynamic distribution for Eucheuma denticulatum (Rhodophyta, Solieriaceae) under climate change in the Indo-Pacific Ocean

    Get PDF
    Submitted version (preprint).This is a preprint of an article published by Elsevier in Marine Environmental Research on 23.08.2022.Available online: doi.org/10.1016/j.marenvres.2022.105730submittedVersio

    Magnetization Dynamics in Synthetic Antiferromagnets with Perpendicular Magnetic Anisotropy

    Full text link
    Understanding the rich physics of magnetization dynamics in perpendicular synthetic antiferromagnets (p-SAFs) is crucial for developing next-generation spintronic devices. In this work, we systematically investigate the magnetization dynamics in p-SAFs combining time-resolved magneto-optical Kerr effect (TR-MOKE) measurements with theoretical modeling. These model analyses, based on a Landau-Lifshitz-Gilbert approach incorporating exchange coupling, provide details about the magnetization dynamic characteristics including the amplitudes, directions, and phases of the precession of p-SAFs under varying magnetic fields. These model-predicted characteristics are in excellent quantitative agreement with TR-MOKE measurements on an asymmetric p-SAF. We further reveal the damping mechanisms of two procession modes co-existing in the p-SAF and successfully identify individual contributions from different sources, including Gilbert damping of each ferromagnetic layer, spin pumping, and inhomogeneous broadening. Such a comprehensive understanding of magnetization dynamics in p-SAFs, obtained by integrating high-fidelity TR-MOKE measurements and theoretical modeling, can guide the design of p-SAF-based architectures for spintronic applications.Comment: 24 pages, 5 figure
    • …
    corecore