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Multiphase flowrate measurement with time series sensing data and sequential
model?
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Abstract

Accurate multiphase flowrate measurement is challenging but vital in the energy industry to monitor the production
process. Machine learning has recently emerged as a promising method for estimating multiphase flowrates based on
different conventional flow meters. In this paper, we propose a Convolutional Neural Network (CNN)-Long-Short Term
Memory (LSTM) model and a Temporal Convolutional Network (TCN) model to estimate the volumetric liquid flowrate
of oil/gas/water three-phase flow based on the Venturi tube. The volumetric flowrates of the liquid and gas phase vary
from 0.1 - 10 m3/h and 7.6137 - 86.7506 m3/h, respectively. We collected time series sensing data from a Venturi tube
installed in a pilot-scale multiphase flow facility and utilized single-phase flowmeters to acquire reference data before
mixing. Experimental results suggest that the proposed CNN-LSTM and TCN models can effectively deal with the time
series sensing data from the Venturi tube and achieve a good accuracy of multiphase flowrate estimation under different
flow conditions. TCN achieves a better accuracy for both liquid and phase flowrate estimation than CNN-LSTM. The
results indicate the possibility of leveraging conventional flow meters for multiphase flowrate estimation under various
flow conditions.

Keywords: Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), Temporal Convolutional
Network (TCN), multiphase flowrate measurement, time series data.
2010 MSC: 00-01, 99-00

1. Introduction

Measurement of multiphase flow has for long been a
challenge in the energy industry [1]. Accurate measure-
ment of oil-water-gas three phase flow is considered a key
factor for achieving efficient, safe and economical produc-
tion. Depending on different application perspectives, a
variety of multiphase flow measurement techniques have
been developed, which can generally be summarized into
four major categories, i.e. flow pattern recognition [2],
flow visualization [3], void fraction measurement [4] and10

flowrate measurement [5]. To date, several studies have
investigated the multiphase flow measurement by using
different techniques. For instance, in Pan et al.’s work, gas
flow rate is predicted using Venturi and gamma ray tech-
nique [6]; the visualisation of a multiphase bubbly flow was
achieved in a non-intrusive way in Zhou et al.’s work [7].
In recent years, the emerging machine learning technique
has become prevailing in multiphase flow characterization,
especially in identifying flow patterns and extracting flow

?Fully documented templates are available in the elsarticle
package on CTAN.
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features [8, 9, 10]. For instance, Artificial Neural Network20

(ANN) is employed to identify the multiphase flow regime
by analysing pressure signals [11]. The performance
of ANN on two-phase flow pattern recognition under
slug flow conditions is studied in [12]. The accuracy
of the hydraulic calculation is dramatically improved
by implementing the data-driven hydraulic calculation
method [13]. High accuracy is achieved on multiphase flow
regimes identification in [14] and [15]. Other representa-
tive work includes distinguishing multiphase flow patterns
for given flow conditions by analysing time-series signals30

[16], implementing Long-Short Term Memory (LSTM) on
flow regime prediction [17], and applying the cluster-based
reduced-order model to extract the flow features of slug
flow [18].

This work focuses on accurate multiphase flowrate
measurement. Due to the limitation of sensors and com-
putational resources, conventional methods for multiphase
flowrate measurement mainly rely upon flow separators
and Single Phase Flow Meters (SPFMs), such as electro-
magnetic flowmeters [19]. These SPFMs are implemented40

to perform flowrate measurements after the separators
separate the multiphase flow into single-phase flows [20].
Although the separation method is commonly utilized
in energy industries, its drawbacks are also obvious; for
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example, separators are costly and cumbersome, and a
long separation period of up to several hours or even
days dis-enables the real-time and in-situ measurement
capability of multiphase flow.

To date, various attempts have been made to overcome
the disadvantages of conventional multiphase flowrate50

measurement methods. For instance, a modified sep-
aration strategy was proposed by Thorn et al., which
implemented a vortex to separate the gas phase first and
then measure the liquid phase by using single or two-
phase flowmeters [21]. Other attempts include the use of
differential pressure [22, 23], radiation [24, 25] and acoustic
based flow meters [26] to directly measure the multiphase
flowrate without separation. Venturi tube as a differential-
pressure single phase flow meter is widely applied in the
energy industry to perform single phase flowrate measure-60

ment. However, the over reading phenomenon usually
occurs when performing the gas liquid two phase flowrate
measurement due to the instantaneous rapid change of
the liquid phase [27]. Meanwhile, these methods can
only operate within a narrow range of Water-Liquid Ratio
(WLR) and/or Gas-Volume Fraction (GVF) if only one
type of flow meters is utilized. To deal with a wide range
of flow conditions, multiple sensors are typically required
to achieve satisfactory multiphase flowrate measurement.

The prosperity of data-driven methods has also intro-70

duced new alternatives for multiphase flowrate measure-
ment by enabling more effective sensing data analysis.
Some pioneer work includes flowrate estimation by using
Flow Adversarial Networks (FANs) [5], Neural Networks
(NN) [28], Deep Neural Network (DNN) [29] , Support
Vector Machine (SVM) [30], virtual metering technique
[31, 32], LSTM [33, 34], and CNN model [35]. Although
the recent progress for multiphase flowrate measurement is
substantial, accurate and simultaneous flowrate measure-
ment of different phases under complicated flow conditions80

(e.g. dynamic three-phase flow) in real time remains very
challenging in practice.

This paper therefore proposes a method for estimating
the liquid and gas volumetric flowrate of oil/gas/water
three-phase flows by combining a differential pressure
based flow meter (i.e. the Venturi tube) with advanced
machine learning techniques (i.e. Temporal Convolu-
tion Networks (TCNs [37]), and the combination of the
Conventional Neural Network (CNN) and the Long-Short
Term Memory (LSTM) model). We consider the char-90

acteristics of the multi-modal time-series sensing data
obtained from the Venturi tube, i.e. the differential-
pressure data, pressure data and temperature data. To
overcome the limitations of convolutional architecture in
dealing with the time-sequence data, the LSTM, which
is a modified structure of the Recursive Neural Network
(RNN) [8], is introduced to avoid the influence of short-
term memory. Then, TCN, as a specifically designed
model for solving time-series data forecast problems, is
firstly applied on multiphase flowrate prediction in this100

study. We train, validate and test the proposed CNN-

LSTM and TCN model based on real-world multiphase
flow sensing data collected from a pilot-scale multiphase
flow facility and demonstrate its effectiveness and potential
for accurate liquid and gas flowrate prediction. Evalu-
ations of the estimated results are performed, and the
performance of TCN and the combination of convolutional
and recurrent architectures (i.e.CNN-LSTM) is compared
under various multiphase flow scenarios.

The novelty of this paper can be summarised as: 1)110

The successful attempt is made on multiphase flowrate
estimation by only leveraging single-phase flow meters; 2)
The state-of-the-art deep learning model for time series
signals prediction is applied on in-situ multiphase phase
flowrate estimation for the first time; 3) Volumetric gas
and liquid flowrates are simultaneously estimated with
satisfactory accuracy with the proposed deep learning
model, which is a long-standing challenge in the energy
industry.

2. Methodology120

2.1. Pilot-scale multiphase flow facility

The multiphase flow experiments were conducted in
the Multiphase Flow Laboratory at Tsinghua Shenzhen
International Graduate School. The flow sensing data
were collected from the pilot-scale multiphase flow testing
facility (see the schematic in Fig. 1 and the picture in
Fig. 2). The pilot-scale multiphase flow facility comprises
a multiphase flow separator tank, oil, water and gas single-
phase flow sections and the mixing sections, and control
units. At the commencement of the experiment, three130

single-phase flows (i.e. oil, water and gas flows) were
separately supplied and pumped into the single-phase flow
pipes. The oil and water were first commingled and then
blended with gas. The final admixture was transported
through the multiphase flow testing section and returned
to the separator for circulating utilization.

SPFMs were installed on oil, water and gas pipes to
measure the flowrate of each phase, which was utilized
to calculate the mixture flowrate reference values for
training, validating and testing of the proposed machine140

learning models. A Venturi tube having a transport
diameter D of 50mm and a throat diameter d of 25mm
was installed in the mixture conveyance pipe to measure
the flowrate. The diameter ratio of the Venturi tube is
0.5 and the sampling frequency is 10Hz. The selection of
the Venturi tube is mainly based on the consideration of
the maximum multiphase flowrate range to be measured,
the working condition pressure during the experiment and
the specification of the multiphase flow facility in the
laboratory. A diagrammatic illustration of the Venturi150

tube is given in Fig. 3. The Venturi tube generates three
pressure signals that are associated with the oil/water/gas
flow dynamics, namely the dynamic pressure P and the
former (∆P1) and posterior (∆P2) differential pressures.
In addition, we collected the temperature T, which is
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Figure 1: Diagrammatic illustration of the multiphase flow testing
facility.

Figure 2: The pilot-scale multiphase flow testing facility at Tsinghua
University multiphase flow laboratory.

employed as the fourth input parameter of the learning
models for multiphase flowrate prediction.

2.2. Flow data acquisition

The reference data, i.e. the ground truth of the
volumetric flowrate of the liquid phase, were the sum160

D

θ

ΔP1 ΔP2
P T

d

Figure 3: Schematic of Venturi tube with its sensing parameters
annotated.

Table 1: Multiphase flow experiment matrix

Objects
Liquid

volumetric
flowrate (m3/h)

Gas volumetric
flowrate (m3/h)

WLR /
GVF

Water 0.9978 – 4.9650 -
0 –

94.5%
Oil 0.0216 – 7.0367 - -
Gas - 7.6134–86.7506 0 – 90%

of the oil and water volumetric flowrate. Based on the
volumetric flowrate obtained from single-phase flowmeters,
the flowrate of the liquid mixture could be calculated by
adding the volumetric flowrate of the oil and water phase.
The Venturi tube measures the instantaneous flowrate two
to five times every second. Considering the difference
in flow conditions at the location of the SPFMs before
mixing and the Venturi tube (see Fig. 1), instead of
directly using the instantaneous sensor measurements, the
reference, pressure and temperature data were averaged170

over a period of time. The averaged flowrate could more
accurately approach the true flowrate of the oil/water
mixture.

Table 1 presents the experimental matrix. To mimic
multiphase flows in real industrial scenarios, the dynamic
flows of water, oil and gas were separately controlled to
cover a large diversity of flowrate ranges. The volumetric
flowrate of water changed from 0.9978 to 4.9650 m3/h and
the water-in-liquid ratio (WLR) varied from 0 to 94.5%.
The volumetric flowrate of gas was 7.6134 - 86.7506 m3/h.180

The GVF was settled start from 0% and increases by 10%
each time until it reaches 90%. For each GVF settlement,
WLR was controlled varies from 0% to 100%.

Interpolation was employed to pre-process the mea-
surement data to compensate for the difference between
the sampling rates of the Venturi tube and the SPFMs. To
improve the training efficiency, for the data collected from
the Venturi tube, five data points at equal time intervals
of every second, which represented 0, 0.2, 0.4, 0.6 and
0.8s, were selected to achieve uniform distribution. The190

nearest interpolation method was applied to estimate the
value at the fixed time points. In detail, the value of the
five data points could be estimated by the nearest actual
value that we obtained from the Venturi tube during the
experiments, and the detailed procedure is shown in Fig. 4.
As the Venturi tube generates three kinds of pressure data,
after interpolation, a 5× 3 matrix, which contains P, ∆P1

0.167 0.20 0.8330.80.333 0.4990.4 0.6670.6

Figure 4: The principle of nearest interpolation method applied on
data collected from Venturi tube.
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and ∆P2 three parameters with five data points for each
parameter, was obtained every second. Therefore, each
pressure parameter contains 98,570 pre-processed data for200

a duration of 328.57 minutes. By implementing the same
procedure on the temperature data, we finally obtain the
sequential data in the format of a 98,570 × 4 matrix, which
is shown in Fig. 5. The final step is to calculate the average
value of the interpolated sequential data every five points
to match with the reference obtained from the SPFMs, the
sampling rate of which is 1 Hz. Eventually, a 19714 × 4
matrix is created.

2.3. Moving average on the acquired flow data

Pursuant to the previous study, it is found that by210

taking the moving average of the obtained instantaneous
data, both the liquid and gas flowrates demonstrate
more accurate prediction results with a smaller absolute
error and deviation than the prediction results based on
instantaneous data [30]. The reason is that errors and
non-alignment phenomena occurs between the sensory
data (differential pressure and temperature data) and the
reference (real liquid and gas flowrate measured by using
the SPFMs). The different spatial position of the Venturi
tube and SPFMs (see Fig. 1) and the highly dynamic220

flow status of the mixture when passing through the
Venturi tube can cause and strengthen such errors and
non-alignment. To limit and inhibit such occurrences,
moving average was introduced to harmonize the training
and target data.

In contrast to the previous study [30], rather than
performing a simple moving average with an identical
length “window” from the beginning to the end of the
sequential data, this study employed a varying window
length for the first 100 data points. In other words,230

the window length gradually increases from the beginning
of the sequential data, and the average of the first ’n’
data observations (n ≤ 100) was calculated. Then,
the traditional moving average method with a window
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Figure 5: Visualization of the pre-processed training data.
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Figure 6: Visualization of the pre-processed training data after
moving average operation.

length of 100 was applied on the remaining data until
the end, which is shown in Fig. 6. The purpose of
adapting the stated moving average strategy was to retain
as much information from the raw data as possible during
the training process. In detail, there were 100 average
calculations by performing varying window length whereas240

only 1 average calculation by performing simple moving
average for the first 100 data. The window length was
selected as 100 mainly based on the training and testing
experience in our previous work [30]. Different window
length (0, 50, 100, 150, 200) was also attempted in this
study and the minimum training error occurs when the
window length equals to 100 for both CNN-LSTM and
TCN model with the value of 0.415 and 0.218, respectively.

2.4. Reference calculation

Three single-phase flowmeters were implemented to
measure the volumetric flowrate of oil, gas and water
before they were mixed, respectively (see Fig. 1). The
reference liquid phase volumetric flowrate (Qliquid

v ) could
then be deducted by adding the volumetric flowrate of oil
(Vo) and water (Vw), which can be formulated as:

Qliquid
v = Vo + Vw (1)

The calculated liquid volumetric flowrate is taken as the250

reference during network training and testing. The single-
phase flows were then mixed and passed through the
Venturi tube, and the corresponding differential pressure
and temperature data were measured and recorded as the
input of the network.

2.5. CNN-LSTM for flowrate estimation

Convolutional Neural Network (CNN) has been widely
applied to deal with image processing problems [36]. At-
tempts have also been made to adapt CNN for multiphase
flowrate estimation [5]. We here first propose a network260

(named CNN-LSTM) that combines the one-dimensional
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CNN (1D CNN) and LSTM model for multiphase flowrate
estimation.

2.5.1. Network structure

The proposed CNN-LSTM model is a combination of
a 1D CNN and three-layer stacked LSTM model (see Fig.
7). In Fig. 7, parameters k, s and p stand for the kernel
size, stride and padding, respectively. The input of the
CNN-LSTM model was obtained from the Venturi tube,
which contained four multiphase flow parameters: P, ∆P1,270

∆P2 and T. Each flow parameter was manipulated by
using the interpolation method and comprises 33,198 data.
The reference flowrate was calculated based on SPFMs
measurements before mixing. The reference of the liquid
phase was the summation of the volumetric flowrate of
water and oil. The output of the CNN-LSTM model is
the estimated volumetric flowrate of the liquid phase.

The input layer contains four measured multiphase
flow parameters and the length of one sample is set to
be 50s, which includes 250 instantaneous sensory data.280

The sequential data reflect the variation in the multiphase
flow parameters within a specific period. Instead of using
instantaneous measurement data as input, this kind of
input reduces the mismatch with the reference caused by
the highly dynamic flows after mixing. The padding layer
is designed to follow the input layer to avoid information
loss with a kernel size of 3 and stride of 1. A zero padding
strategy was adopted to ensure that the central Kernel
was located on the data points as much as possible. The
batch norm layer was designed to be followed by the290

convolution layer to prevent the vanishing or exploding
gradient problem.

The function of the pooling layer is to downsample and
reduce the dimensionality of the data. It is designed to run
in parallel with the conv1D, batch norm and ReLU layers.
Such a two-channel sub-sampling structure is designed
to extract more advanced features of the multiphase
flow parameters while retaining the main features. The
concatenation layer plays a role in combining the outputs
of the two channels in the previous layer, and it is supposed300

to connect two or more feature maps with the same
dimensionality together. It is a utility layer that links the
multiple input blob onto an output blob.

Once the feature extraction process of differential pres-
sure and temperature signals is complete, the transpose
convolution layer is connected. It is referred to as the
fractionally strided convolution layer, and it reverts the
size of the output map back to the size of the input map
while keeping the connection status unchanged. Together
with the convolution process, they are regarded as a310

complete symmetrical process in the 1D CNN-LSTM
model. The fully connected layer ordinarily appears at
the end of the CNN and plays the role of regression, which
is the predicted flowrate of the liquid phase. The core
operation of the fully connected layer is the production
of the matrix. To improve the performance of the CNN

network, the activation function of each neuron in the fully
connected layer is set as the ReLU function in this study.

We cascaded the stacked LSTM before the fully con-
nected layer. The LSTM, as a special RNN model, is320

designed to resolve the long-term dependencies problem.
The structure of LSTM is shown in Fig. 8. The dimension
of the input (Xt) from the transpose layer is 16*256, which
contains 16 LSTM units with an input dimension (Xi) of =
1*256 (1 ≤ i ≤ 16). The output hi, h

′

i and h
′′

i (1 ≤ i ≤ 16)
represents the output of the LSTM in each layer with the
dimension of 1*64, 1*64 and 1*16, respectively. Layer
3 is also known as the output layer of the stack LSTM,
where the set of each single unit’s output from Layer 3
(h

′′

i ) has the dimension of 16*64. Meanwhile, the last-330

moment output of stack LSTM (hn) can be obtained from
the combination of the final output of each layer, which
is the set of {h16, h

′

16, h
′′

16} with the dimension of 3*64.
Therefore, the final output of the stack LSTM is obtained
by extracting the last element from the set hn, which is
h

′′

16 with the dimension of 1*64. It is also consistent with
the dimension of the input to the full connection layer in
Fig .7 during the forward propagation process. In this
study, different layers of LSTM were attempted, and the
minimum training error was obtained for the CNN-LSTM340

model when LSTM had three layers. Meanwhile, the
computation time significantly increased when the LSTM
layer increased, which is not efficient in real applications.

2.6. TCN for multiphase flowrate estimation

An enhanced Temporal Convolutional Network (TCN)
was designed to solve the sequential data prediction
problem by combining the generic convolutional and causal
convolutional architecture together in 2018 [37]. To
overcome the vanishing/exploration gradient drawbacks
of the traditional recurrent networks (such as RNN and350

LSTM) in the sequential model, a generic convolutional
architecture was considered as the starting point for
building the TCN model.

The structure of the TCN-based multiphase flowrate
estimation model is illustrated in Fig. 9. From the input
layer, the length of the input data was set to 128 which
contains four training parameters with a batch size ‘b’
of 64. Therefore, the input dimension of the network is
defined as 64*128*4. Before the input data propagate
through the temporal block, it is initially modified by360

1D convolutional and chomp 1D section to ensure that
the network will only analyze the past and current data
and that the predictions are not influenced by ‘future’
sequential data.

The temporal block with its input dimension of (batch*in-
channel*sequence length) from the previous layer was
then connected into the network. It consisted of seven
semi-blocks with the same architecture but with different
parameter settings. Details of the architecture of the semi-
block are shown in Fig. 10.370

All the parameter settings are the same for the seven
semi-blocks except the out-channel, dilation ratio (d) and
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Figure 7: Schematic of the CNN-LSTM model.

h''0 h''1 h''2

...

h''16

Layer 3

Layer 2

Layer 1

h'0 h'1 h'2

...

h'16

h0 h1 h2

...

h16

X0 X1 X2 X16

Figure 8: Schematic of the stack LSTM model.

the void rate. These three parameters of each semi-block
are sequentially shown in the ‘temporal block’ in Fig. 9,
which will not be stated again in the remainder of this
paper. According to Fig. 10, the input (x) in layer 1O has
the dimension of 1*128*128, which indicates that the batch
number is set to 1. The in-channel and sequence length
are both consistent with the previous layer of the entire
network, which is 128. After the input layer, the sequential380

data passes through a residual block for the designed TCN,
which contains layers 2O to 12O. The residual contains
two dilated causal convolution layers with the parameter
settings of k =3, p=2 and s=1, and a dilation ratio = 2i,
where i indicates the position of the semi-block. Weight
normalization was applied to the convolutional filters in
Bai’s work [37]. During the training process, we compared
the performance of the weight and batch normalization
methods. The results indicated that weight normalization
has a lower computational cost and can be immune to390

the influence of the noise that is caused by the random
property of the mini-batch. However, the robustness of the
weight normalization method for parameter initialization
was not sufficiently strong. This issue was solved by adding
a spatial dropout layer for regularization. Specifically,
the initialization was achieved by ensuring that the entire
channel was zeroed out at each training step.

There is an optional route (layer 12O & 13O) in the resid-
ual block, that performs the judgement operation. For the

conventional residual block structure, the summarization400

operation can be directly performed between the input and
output of the residual function. Nonetheless, the input
to the TCN can have a different width than its output;
addition cannot be performed if the element width is not
matched. Therefore, a convolution layer with a kernel size
of 1 was utilized to ensure that the widths of the in- and
out-channels were aligned. In our designed residual block,
the output of layer 1O is added to the output of the layer
11O or 13O, depending on the output channel width.

The dimension of the final output of the TCN model410

is 1*128, which has the same length as the input data. It
is one of the clearly different characteristics of the TCN
compared with CNN, which has an output dimension of
1*1. In other words, the output data length of the TCN
can be adjusted by controlling the input data length and it
represents the sequential forecasting results. In this study,
the last digit of the output sequential data was selected
as the final result because it represents the most current
estimation. Therefore, for 1971 test sequential data group
(each sequential data group contains 128 sequential data),420

we are able to obtain 1971 estimation results.

2.7. Network parameters

In Fig. 7 and Fig. 9, the kernel size of the CNN-
LSTM and TCN network is noted as ‘k’; ‘p’ stands for
the padding process, and zero padding was chosen in
this study. The stride, which indicates the length of the
convolution step, was noted as ‘s’. The correct size of
‘s’ is crucial because repeated calculations will occur, and
the training efficiency of the network is reduced with a
smaller stride number; however, key information may be430

lost, and the data features may not be extracted with a
large stride. Therefore, in this study, the stride was set to
2 for the CNN-LSTM model and 1 for the TCN model.

The Rectified Linear Unit (ReLU) function was chosen
as the excitation function to prevent the vanishing gradient
problem during the training process. It can be expressed
as:

ReLU(x) =

{
x (x>0)
0 (x ≤ 0)

(2)

The loss function was chosen to be the Mean Square
Error (MSE) during the training process, which is a com-
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Figure 9: Schematic of the TCN model.
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Figure 10: Schematic of the temporal block in TCN.

monly used regression loss function in machine learning.
It calculates the MSE between the estimated (ŷ) and the
target values (y), which can be mathematically expressed
as:

MSE =
1

n

n∑
i=1

[ŷi − yi]2 (3)

where n is the number of samples.

3. Results and Discussion

This Section presents the liquid- and gas-phase flowrate
estimation results based on the proposed CNN-LSTM and
TCN models. A comparison was also made between the
two models.

3.1. Network training440

As stated in Section 2.2, the differential pressure, stan-
dard pressure and temperature data were pre-processed
to facilitate the training process. Specifically, the number

of measurements per second was unified by using linear
interpolation, after which a uniform sampling rate of
5Hz was obtained. Since the summation of the in-
stantaneous flowrate of single-phase flows before mixing
did not comprehensively correspond to the instantaneous
measurement data obtained from the Venturi tube due
to spatial differences and the inherent characteristics of450

multiphase flow (such as the rapid change of flow pattern
and flowrate). Therefore, it is more meaningful to predict
the average flowrate over a period to mitigate the influence
of such phenomena. Hence, in training, we adopted a 50
seconds period, and the average flowrate was calculated
every 50s as a reference. After pre-processing, 19,714
samples were obtained. The experimental samples were
randomly divided into the training, validation and testing
data set in the proportions of 80%, 10% and 10%,
respectively. The epoch number was set as 230 for the460

CNN-LSTM model and 400 for the TCN model for the
best prediction results (minimum validation error occurs),
respectively. The learning rate was 0.001 for both models.

3.2. Results of CNN-LSTM

Fig. 11 presents the estimated liquid and gas phase
volumetric flowrate by using the proposed CNN-LSTM
model. The instantaneous (un-smoothed) and pre-processed
(smoothed) data were separately utilized during the mul-
tiphase flowrate estimation process, which corresponds to
the results shown in Figs.11 and 12, respectively.470

By comparing the flowrate estimation results for dif-
ferent flow phases, it is clear that a positive correlation
is found between the predicted volumetric flowrate of the
liquid phase and the reference flowrate in Figs. 11a and
12a. In detail, the majority of the estimation results
(88.3% for smoothed data and 79.1% for un-smoothed
data) are located within an acceptable error range (i.e.
the ±10% of the regression line), with only a few points
outside the boundary. This suggests the effectiveness of
utilizing CNN-LSTM to manage the time-series sensing480

data to estimate the multiphase flowrate under more
complex scenarios. A similar trend can also be obtained
in the volumetric flowrate estimation of the gas phase
when the gas flowrate is less than 40(m3/h) in Fig. 12b.
However, when the gas flowrate exceeds 40(m3/h), no
obvious correlation appears, and the estimation results
seem to be randomly distributed. Although most of the
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Figure 11: Multiphase flowrate estimation results of (a) liquid phase
and (b) gas phase by using CNN-LSTM with un-smoothed training
data.

estimation results (80.3% for smoothed and 80.5% for un-
smoothed) for the gas phase are still located within the
±10% of the regression line, we cannot conclude that the490

results are acceptable due to the non-linear distribution of
the estimation results.

In this study, we employ absolute error instead of
relative error as a performance indicator, because it is
a common practice in this field, and it is extremely
challenging to accurately predict the small flowrates. The
deviation of the estimated liquid flowrate is presented
in Fig. 13a. Most of estimation errors fall inside the
acceptable range, and several points exceeds the plus or
minus ten percent line. It further confirms that the CNN-500

LSTM model can be considered as an effective method for
liquid phase flowrate estimation with time-series sensing
data as the input. Meanwhile, the limitation on gas phase
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Figure 12: Multiphase flowrate estimation results of (a) liquid phase
and (b) gas phase by using CNN-LSTM with smoothed training data.

flowrate estimation is also non-negligible in the 1D CNN-
LSTM model, which is shown in Fig. 13b. Therefore, the
TCN model is developed to further deal with such issues
and as a comparison to the CNN-LSTM model.

3.3. Results of TCN

The proposed TCN model was also separately trained
by un-smoothed and smoothed parameters and the mul-510

tiphase flowrate estimation results were shown in Fig.
14 and Fig. 15, respectively. Fig. 14 presents the
multiphase flowrate estimation results obtained from the
instantaneous training data of the TCN model. In Fig.
14a, a rough linear relationship can be observed between
the estimated liquid flowrate and the reference. Still,
5.9% of the estimation results are not located in the
±10% range with obvious deviations. From analyzing only
Fig. 14a, it could be argued that such a phenomenon is
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Figure 13: Deviation of (a) liquid phase and (b) gas phase by
using CNN-LSTM with smoothed and un-smoothed training data
by implementing CNN-LSTM model.

probably caused by the mismatch between the training and520

the target data, which is unavoidable when implementing
instantaneous training data as input. From the data
in Fig. 14b, it is apparent that the linear regression
of the predicted gas flowrate is observed from the TCN
model. Even the input training data is instantaneous data
without any pre-processing procedure. Such a regression
phenomenon on the estimated gas results initially confirms
that the TCN model can resolve time-series data from
multiphase flow area. In other words, the non-perfect
linearity of the predicted liquid phase flowrate may be due530

to the characteristics of the training data rather than the
inherent limitations of the TCN model. To further inves-
tigate the inherent ability of the TCN model, smoothed
training data were applied, and the multiphase flowrate
estimation results are presented in Fig. 15. A perfect
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Figure 14: Multiphase flowrate estimation results of (a) liquid phase
and (b) gas phase by using TCN with un-smoothed training data.

linear regression phenomenon appears for both liquid and
gas phase estimation results. Nearly all the forecasting
points are located within an acceptable range (±10%) with
only one exception in the gas estimation results. Fig. 15
indicates that TCN model can manage the pre-processed540

sequential differential pressure and temperature data for
the multiphase flowrate estimation problem.

The more accurate flowrate estimation results obtained
using smoothed data further confirms that the charac-
teristic (or the smoothness process) of the input data
plays a non-negligible role in the multiphase flowrate
prediction problem. In particular, the alignment between
the training and the reference data are more accurate with
the smoothed data according to the comparison between
estimation results given in Figs. 14 and 15. It could550

be expounded that the flow status of the three-phase
mixture rapidly varies when it passes through the Venturi
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Figure 15: Multiphase flowrate estimation results of (a) liquid phase
and (b) gas phase by using TCN with smoothed training data.

tube, which causes the instantaneous recording of the
training parameters to be misaligned with the reference
data, which are recorded under a more stable flow status in
a single-phase flow pipe. The moving average method over-
comes such inherent drawbacks of the multiphase flowrate
measurement by aligning the training and reference data
within a period, and the estimation results demonstrate
that the pre-process is considerable when dealing with560

multiphase flowrate estimation problems.
The deviation demonstrated in Fig. 16 further con-

firms the conclusions that the relatively large estima-
tion deviation is caused by the characteristic of the
instantaneous multiphase flow parameters rather than the
inherent ability of the TCN model. Both the liquid
and gas estimation results demonstrate smaller deviations
with the pre-processed training and reference data in
Fig. 16. Larger deviations and more outside-range
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Figure 16: Deviation of (a) liquid phase and (b) gas phase by
using TCN with smoothed and un-smoothed training data by
implementing TCN model.

points are observed in Fig. 16 with the instantaneous570

(un-smooth) data, which indicates that non-alignment
phenomena occur during the multiphase flowrate esti-
mation process. We can further conclude that the pre-
processing of instantaneous data plays an important role
in multiphase flowrate estimation by reducing the affect
caused by the non-alignment between the training and
reference data.

In industry applications, different Venturi structures
may provide various differential pressure signals. The
TCN model can still be applied on multiphase flowrate580

estimation when differential pressure signal changes but
re-training and parameter tuning of the TCN are possibly
required in order to achieve the best prediction results for
different scenarios.
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3.4. Comparison between CNN-LSTM and TCN

To acquire comprehensive knowledge of the perfor-
mance of the proposed machine learning methods on
multiphase flowrate estimation, the MSE and the cor-
relation between the reference and estimated multiphase
flowrate were also considered as complementary metrics for590

evaluating the performance of the CNN-LSTM and TCN.
The correlation index can be calculated by:

ρx,y =
Cov(x, y)
√
σxσy

(4)

where x and y represent the estimated and reference mul-
tiphase flowrate, respectively; σ stands for the standard
deviation. The calculated MSE and correlation index
for the estimated multiphase flowrate of CNN-LSTM and
TCN under different scenarios are shown in Table. 2,
where the subscript un and s stands for the ‘un-smoothed’
and ‘smoothed’ data, respectively.

TCN results have larger correlation index and smaller
MSE for liquid and gas flowrate estimation with un-600

smoothed and smoothed data compared with the CNN-
LSTM results. This observation indicates that TCN has
an increased ability for multiphase flowrate prediction
under various flow conditions. The effect of the pre-
processing of the training data on the prediction accuracy
can be evaluated by comparing the same evaluation index
of the same method but with different types of data. In
detail, using CNN-LSTM as an example, ρCNN−LSTM

un and
ρCNN−LSTM
s are 0.9190 and 0.9688 for the liquid phase

flowrate estimation, respectively. Hence, the moving aver-610

age pre-processing improves the liquid phase prediction
accuracy when the CNN-LSTM model is implemented.
Similarly, by performing such a comparison between the
remaining groups in Table. 2, we can conclude that by
using a moving average manipulation on the instantaneous
flow parameters, higher accuracy for the predicted multi-
phase flowrate can be expected. The only exception is
when predicting the gas phase flowrate by implementing
the CNN-LSTM model. It could be explained that the
CNN-LSTM model is not sufficiently sensitive to the input620

data to the multiphase flowrate estimation application.
Specifically, although the CNN-LSTM model has the
information storage ability during the decision making
process, it still cannot memorize all the past information,
and the final decision may also partially depend on the
future information. The latter process is not achievable
in an actual application because the future information
is unavailable under a time-series forecasting scenario.
Meanwhile, the structure of the TCN can be summarized
as the addition of a 1D Fully-Convolutional Network630

(FCN) and the causal convolutions. Such a structure
affords the TCN model two unique characteristics for
the time-series data forecasting problem. The first is
that the causal convolution block ensures that the output
of the TCN model relies on the past information only,
and in contrast to the CNN-LSTM model, all the past

information contributes to the output of the TCN model.
The second characteristic of the TCN model is that the
output layer has the same length and width as the input
layer, which is achieved by using the zero-padding method640

in the 1D FCN block. Therefore, the manipulation of the
input data influences the output when the TCN model
is implemented for the multiphase flowrate estimation
problem.

According to Table. 2, TCN achieves the highest
correlation index and smallest MSE for both liquid and
gas phases when accepting smoothed data as input. This
demonstrates the strong ability of the TCN for multiphase
flowrate estimation and the necessity for manipulating the
raw multiphase flow parameters to obtain more accurate650

estimated flowrates.

4. Conclusion

This paper proposed CNN-LSTM and TCN models
for multiphase flowrate estimation of dynamic three-phase
flows with multiple time-series sensing data obtained from
a Venturi tube. We trained, validated and tested the
proposed CNN-LSTM and TCN models using real-world
flow sensing data acquired from a pilot-scale multiphase
flow facility. The results validated the feasibility and
effectiveness of the TCN model to estimate multiphase660

flowrate and the CNN-LSTM model to predict liquid phase
flowrate with times-series sensing data collected from the
Venturi tube. Estimation performance evaluation revealed
that compared with CNN-LSTM, TCN demonstrates a
stronger ability for multiphase flowrate estimation on
both liquid and gas phases, and achieves more accurate
estimation results. The characteristics of the input data
(instantaneous or moving averaged data) also plays a
non-negligible role in multiphase flowrate estimation, and
a pre-processing procedure is proposed to overcome the670

problem caused by the mis-alignment between the training
and reference data. The comparison of the liquid and
gas phase flowrate estimation results revealed that TCN
performs better than CNN-LSTM on time-series data in a
multiphase flow area.

Future work will be conducted in the near future to es-
tablish a multi-modality data fusion platform with multi-
sensors to accurately estimate the multiphase flowrate by
using the proposed machine learning based method.
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