11,453 research outputs found

    In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level

    Get PDF
    The shrinking and swelling of wood due to moisture changes are intrinsic material properties that control and limit the use of wood in many applications. Herein, hygroscopic deformations of normal and compression wood of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) were measured during desorption and absorption processes. The dimensional changes were observed in situ by an environmental scanning electron microscope and analyzed at different hierarchical levels (tissue, cell and cell wall). The relationship between moisture variation and hygroscopic deformation was measured. During initial desorption periods from 95 to 90 or 75% RH, an expansion of the lumen and a shrinkage of the cell wall were observed, revealing a non-uniform and directional deformation of single wood cells. The variation of shrinking or swelling at different hierarchical levels (tissue, cell and cell wall) indicates that the hygroscopic middle lamella plays a role in the deformation at the tissue level. Higher microfibril angles and helical cavities on the cell wall in compression wood correlate with a lower shrinking/swelling ratio. Normal wood showed a more pronounced swelling hysteresis than compression wood, while the sorption hysteresis was almost the same for both wood types. This finding is helpful to elucidate effects of micro- and ultrastructure on sorption. The present findings suggest that the sophisticated system of wood has the abilities to adjust the hygroscopic deformations by fine-tuning its hierarchical structures

    Mass Hierarchy Determination Using Neutrinos from Multiple Reactors

    Full text link
    We report the results of Monte Carlo simulations of a medium baseline reactor neutrino experiment. The difference in baselines resulting from the 1 km separations of Daya Bay and Ling Ao reactors reduces the amplitudes of 1-3 oscillations at low energies, decreasing the sensitivity to the neutrino mass hierarchy. A perpendicular detector location eliminates this effect. We simulate experiments under several mountains perpendicular to the Daya Bay/Ling Ao reactors, considering in particular the background from the TaiShan and YangJiang reactor complexes. In general the hierarchy can be determined most reliably underneath the 1000 meter mountain BaiYunZhang, which is 44.5 km from Daya Bay. If some planned reactors are not built then nearby 700 meter mountains at 47-51 km baselines gain a small advantage. Neglecting their low overhead burdens, hills near DongKeng would be the optimal locations. We use a weighted Fourier transform to avoid a spurious dependence on the high energy neutrino spectrum and find that a neural network can extract quantities which determine the hierarchy marginally better than the traditional RL + PV.Comment: 22 pages, added details on the neural network (journal version

    The Decay of Disease Association with Declining Linkage Disequilibrium: A Fine Mapping Theorem

    Get PDF
    Several important and fundamental aspects of disease genetics models have yet to be described. One such property is the relationship of disease association statistics at a marker site closely linked to a disease causing site. A complete description of this two-locus system is of particular importance to experimental efforts to fine map association signals for complex diseases. Here, we present a simple relationship between disease association statistics and the decline of linkage disequilibrium from a causal site. Specifically, the ratio of Chi-square disease association statistics at a marker site and causal site is equivalent to the standard measure of pairwise linkage disequilibrium, r2. A complete derivation of this relationship from a general disease model is shown. Quite interestingly, this relationship holds across all modes of inheritance. Extensive Monte Carlo simulations using a disease genetics model applied to chromosomes subjected to a standard model of recombination are employed to better understand the variation around this fine mapping theorem due to sampling effects. We also use this relationship to provide a framework for estimating properties of a non-interrogated causal site using data at closely linked markers. Lastly, we apply this way of examining association data from high-density genotyping in a large, publicly-available data set investigating extreme BMI. We anticipate that understanding the patterns of disease association decay with declining linkage disequilibrium from a causal site will enable more powerful fine mapping methods and provide new avenues for identifying causal sites/genes from fine-mapping studies

    On the Three-dimensional Lattice Model

    Get PDF
    Using the restricted star-triangle relation, it is shown that the NN-state spin integrable model on a three-dimensional lattice with spins interacting round each elementary cube of the lattice proposed by Mangazeev, Sergeev and Stroganov is a particular case of the Bazhanov-Baxter model.Comment: 8 pages, latex, 4 figure

    Tunable singlet-triplet splitting in a few-electron Si/SiGe quantum dot

    Full text link
    We measure the excited-state spectrum of a Si/SiGe quantum dot as a function of in-plane magnetic field, and we identify the spin of the lowest three eigenstates in an effective two-electron regime. The singlet-triplet splitting is an essential parameter describing spin qubits, and we extract this splitting from the data. We find it to be tunable by lateral displacement of the dot, which is realized by changing two gate voltages on opposite sides of the device. We present calculations showing the data are consistent with a spectrum in which the first excited state of the dot is a valley-orbit state.Comment: 4 pages with 3 figure

    Strange nonchaotic attractors in noise driven systems

    Full text link
    Strange nonchaotic attractors (SNAs) in noise driven systems are investigated. Before the transition to chaos, due to the effect of noise, a typical trajectory will wander between the periodic attractor and its nearby chaotic saddle in an intermittent way, forms a strange attractor gradually. The existence of SNAs is confirmed by simulation results of various critera both in map and continuous systems. Dimension transition is found and intermittent behavior is studied by peoperties of local Lyapunov exponent. The universality and generalization of this kind of SNAs are discussed and common features are concluded

    Comparative studies on wood structure and microtensile properties between compression and opposite wood fibers of Chinese fir plantation

    Get PDF
    The microtensile properties of mechanically isolated compression wood (CW) and opposite wood (OW) tracheids of Chinese fir (Cunninghamia lanceolata) were investigated and discussed with respect to their structure. Major differences in the tensile modulus and ultimate tensile stress were found between CW and OW fibers. Compared to OW, CW showed a larger cellulose microfibril angle, less cellulose content and probably more pits, resulting in lower tensile properties. These findings contribute to a further understanding of the structural–mechanical relationships of Chinese fir wood at the cell and cell wall level, and provide a scientific basis for better utilization of plantation softwood

    An independent test of the photometric selection of white dwarf candidates using LAMOST DR3

    Full text link
    In Gentile Fusillo et al. (2015) we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (Pwd). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in nearly 66,000 photometrically selected objects with a derived Pwd, approximately 21000 of which are high confidence white dwarf candidates. Here we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the LAMOST (Large Sky Area Multi-Fiber Spectroscopic Telescope) survey. We do this by cross matching all our \sim66,000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects we identify 309 genuine white dwarfs. We find that our Pwd can efficiently discriminate between confirmed LAMOST white dwarfs and contaminants. Our white dwarf candidate selection method can be applied to any multi-band photometric survey and in this work we conclusively confirm its reliability in selecting white dwarfs without recourse to spectroscopy. We also discuss the spectroscopic completeness of white dwarfs in LAMOST, as well as deriving effective temperatures, surface gravities and masses for the hydrogen-rich atmosphere white dwarfs in the newly identified LAMOST sample.Comment: 10 pages, 7 figures. Accepted for publication in MNRAS. The full catalogue presented in table 4 is available at http://www2.warwick.ac.uk/fac/sci/physics/research/astro/catalogues/SDSS_WD_candidates_with_LAMOST_spectra.cs
    corecore