6,260 research outputs found

    Effects of Three Gorges Reservoir (TGR) water storage in June 2003 on Yangtze River sediment entering the estuary

    No full text
    International audienceThe world-greatest water conservancy project, Three Gorges Reservoir (TGR), stored water for the first time in June 2003, which provides an excellent opportunity to examine its effects on the sediment entering the Yangtze River estuary. A daily record dataset of water discharge and suspended sediment concentration (SSC) of the Yangtze River measured at Datong (the controlling hydrological gauging station into the estuary) from May 15 to July of 2003 spanning the water storage, together with a monthly record dataset of runoff, sediment load and SSC measured at Datong from 1953 to 2003, were used to examine the effects of the TGR water storage in June 2003 on the Yangtze River sediment entering the estuary. The results show that the unnaturally clearer water due to the TGR sedimentation resulted by the water storage in June 2003 brought the Yangtze River markedly decreased SSC and sediment load entering the estuary both during the TGR water storage and in the second half year of 2003. The Yangtze River water and sediment discharges into the estuary from 15 May to 15 July in 2003 spanning the TGR water storage clearly indicated three phases: (1) pre-water storage of the TGR from 15 May to 25 May, during this phase, SSC and sediment load increased with water discharge increasing; (2) water storage of the TGR from 25 May to 10 June (including the preparation phase from 25 May to 31 May), during this phase, SSC and sediment load decreased dramatically with water discharge decreasing; and (3) post-water storage of the TGR, at the beginning, SSC, sediment load and water discharge basically remained at a relatively low value until the end of June, and since then, SSC and sediment load increased gradually with water discharge increasing. In addition, the real total sediment load was reduced by 2456.07×104 t than the estimated total sediment load during the period from 27 May to 2 July in 2003

    The Impact of Word, Multiple Word, and Sentence Input on Virtual Keyboard Decoding Performance

    Get PDF
    Entering text on non-desktop computing devices is often done via an onscreen virtual keyboard. Input on such keyboards normally consists of a sequence of noisy tap events that specify some amount of text, most commonly a single word. But is single word-at-a-time entry the best choice? This paper compares user performance and recognition accuracy of wordat- a-time, phrase-at-a-time, and sentence-at-a-time text entry on a smartwatch keyboard. We evaluate the impact of differing amounts of input in both text copy and free composition tasks. We found providing input of an entire sentence significantly improved entry rates from 26wpm to 32wpm while keeping character error rates below 4%. In offline experiments with more processing power and memory, sentence input was recognized with a much lower 2.0% error rate. Our findings suggest virtual keyboards can enhance performance by encouraging users to provide more input per recognition event.This work was supported by Google Faculty awards (K.V. and P.O.K.

    Drought events and their effects on vegetation productivity in China

    Get PDF
    Many parts of the world have experienced frequent and severe droughts during the last few decades. Most previous studies examined the effects of specific drought events on vegetation productivity. In this study, we characterized the drought events in China from 1982 to 2012 and assessed their effects on vegetation productivity inferred from satellite data. We first assessed the occurrence, spatial extent, frequency, and severity of drought using the Palmer Drought Severity Index (PDSI). We then examined the impacts of droughts on China\u27s terrestrial ecosystems using the Normalized Difference Vegetation Index (NDVI). During the period 1982–2012, China\u27s land area (%) experiencing drought showed an insignificant trend. However, the drought conditions had been more severe over most regions in northern parts of China since the end of the 1990s, indicating that droughts hit these regions more frequently due to the drier climate. The severe droughts substantially reduced annual and seasonal NDVI. The magnitude and direction of the detrended NDVI under drought stress varied with season and vegetation type. The inconsistency between the regional means of PDSI and detrended NDVI could be attributed to different responses of vegetation to drought and the timing, duration, severity, and lag effects of droughts. The negative effects of droughts on vegetation productivity were partly offset by the enhancement of plant growth resulting from factors such as lower cloudiness, warming climate, and human activities (e.g., afforestation, improved agricultural management practices)

    Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring

    Get PDF
    Novel colorimetric films were developed for real-time monitoring of fish freshness based on starch/polyvinyl alcohol (SPVA) incorporated with roselle (Hibiseus sabdariffa L.) anthocyanins (RACNs). Firstly, RACNs were extracted from roselle dehydrated calyxes. Secondly, SPVA aqueous solution was obtained with a mass rate of 2:1 (starch/PVA). Thirdly, the colorimetric films were fabricated by immobilizing 30, 60 and 120 mg RACNs/100 g starch into SPVA matrix with casting/solvent evaporation method. FTIR spectra of the colorimetric films showed that RACNs were successfully immobilized into the SPVA matrix. X-ray diffraction spectra and SEM micrographs indicated that the crystallinity of PVA was reduced during the film-forming process and the compatibility between starch and PVA was improved, owing to the presence of RACNs. The incorporation of RACNs led to a decrease of water content and tensile strength and an increase of elongation at break of the colorimetric films compared with the SPVA film. The color stability test showed that the colorimetric films were stable at refrigeration temperature and room temperature up to 14 days with relative color changes below than 5%. The colorimetric films with lower content of RACNs were found more sensitive towards ammonia. An application trial was conducted to monitor the freshness of silver carp (Hypophthalmichthys molitrix) at refrigeration temperature. The colorimetric films presented visible color changes over time due to a variety of basic volatile amines known as total volatile basic nitrogen (TVB-N). Hence, these colorimetric films can be used to monitor the real-time fish freshness for intelligent packaging

    Magnetically asymmetric interfaces in a (LaMnO3_3)/(SrMnO3_3) superlattice due to structural asymmetries

    Full text link
    Polarized neutron reflectivity measurements of a ferromagnetic [(LaMnO3_3)11.8_{11.8}/(SrMnO3_3)4.4_{4.4}]6_6 superlattice reveal a modulated magnetic structure with an enhanced magnetization at the interfaces where LaMnO3_3 was deposited on SrMnO3_3 (LMO/SMO). However, the opposite interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The magnetic asymmetry arises from the difference in lateral structural roughness of the two interfaces observed via electron microscopy, with strong ferromagnetism present at the interfaces that are atomically smooth over tens of nanometers. This result demonstrates that atomic-scale roughness can destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
    • …
    corecore