6,573 research outputs found

    Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator

    Full text link
    We demonstrate a diode-laser-pumped system for generation of quadrature squeezing and polarization squeezing. Due to their excess phase noise, diode lasers are challenging to use in phase-sensitive quantum optics experiments such as quadrature squeezing. The system we present overcomes the phase noise of the diode laser through a combination of active stabilization and appropriate delays in the local oscillator beam. The generated light is resonant to the rubidium D1 transition at 795nm and thus can be readily used for quantum memory experiments.Comment: 6 pages 4 figure

    On the error term in Weyl's law for the Heisenberg manifolds (II)

    Full text link
    In this paper we study the mean square of the error term in the Weyl's law of an irrational (2l+1)(2l+1)-dimensional Heisenberg manifold . An asymptotic formula is established

    Statistics of correlated percolation in a bacterial community

    Get PDF
    Signal propagation over long distances is a ubiquitous feature of multicellular communities, but cell-to-cell variability can cause propagation to be highly heterogeneous. Simple models of signal propagation in heterogenous media, such as percolation theory, can potentially provide a quantitative understanding of these processes, but it is unclear whether these simple models properly capture the complexities of multicellular systems. We recently discovered that in biofilms of the bacterium Bacillus subtilis, the propagation of an electrical signal is statistically consistent with percolation theory, and yet it is reasonable to suspect that key features of this system go beyond the simple assumptions of basic percolation theory. Indeed, we find here that the probability for a cell to signal is not independent from other cells as assumed in percolation theory, but instead is correlated with its nearby neighbors. We develop a mechanistic model, in which correlated signaling emerges from cell division, phenotypic inheritance, and cell displacement, that reproduces the experimentally observed correlations. We find that the correlations do not significantly affect the spatial statistics, which we rationalize using a renormalization argument. Moreover, the fraction of signaling cells is not constant in space, as assumed in percolation theory, but instead varies within and across biofilms. We find that this feature lowers the fraction of signaling cells at which one observes the characteristic power-law statistics of cluster sizes, consistent with our experimental results. We validate the model using a mutant biofilm whose signaling probability decays along the propagation direction. Our results reveal key statistical features of a correlated signaling process in a multicellular community. More broadly, our results identify extensions to percolation theory that do or do not alter its predictions and may be more appropriate for biological systems.P50 GM085764 - NIGMS NIH HHS; Howard Hughes Medical Institute; R01 GM121888 - NIGMS NIH HHSPublished versio

    Identification of the relationship between Chinese Adiantum reniforme var. sinense and Canary Adiantum reniforme

    Get PDF
    © 2014 Wang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces

    Full text link
    Using polarized X-rays, we compare the electronic and magnetic properties of a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant magnetic scattering (XRMS), we can probe the interfaces of complicated layered structures and quantitatively model depth-dependent magnetic profiles as a function of distance from the interface. Comparisons of the average electronic and magnetic properties at the interface are made independently using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The XAS and the XMCD demonstrate that the electronic and magnetic structure of the LMO layer at the modified interface is qualitatively equivalent to the underlying LSMO film. From the temperature dependence of the XMCD, it is found that the near surface magnetization for both interfaces falls off faster than the bulk. For all temperatures in the range of 50K - 300K, the magnetic profiles for both systems always show a ferromagnetic component at the interface with a significantly suppressed magnetization that evolves to the bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however the difference is only substantial at low temperature.Comment: 4 pages, 4 figure

    Two-photon interference with two independent pseudo-thermal sources

    Get PDF
    The nature of two-photon interference is a subject that has aroused renewed interest in recent years and is still under debate. In this paper we report the first observation of two-photon interference with independent pseudo-thermal sources in which sub-wavelength interference is observed. The phenomenon may be described in terms of the classical statistical distribution of the two sources and their optical transfer functions.Comment: Phys. Rev. A 74, 053807 (2006

    Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite

    Full text link
    Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missing. Previous research has revealed that MAPI possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in MAPI and find direct evidence for another form of disorder in single crystals: large amplitude anharmonic zone-edge rotational instabilities of the PbI_6 octahedra that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium couple strongly and cooperatively to these modes. The result is a non-centrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction, but can explain key material properties such as the structural phase sequence, ultra low thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility.Comment: 30 pages, 11 figure

    Probing the QCD Equation of State

    Get PDF
    We propose a novel quasiparticle interpretation of the equation of state of deconfined QCD at finite temperature. Using appropriate thermal masses, we introduce a phenomenological parametrisation of the onset of confinement in the vicinity of the phase transition. Lattice results of bulk thermodynamic quantities are well reproduced, the extension to small quark chemical potential is also successful. We then apply the model to dilepton production and charm suppression in ultrarelativistic heavy-ion collisions.Comment: 6 pages, 8 figures. Invited talk presented by R. A. Schneider at the XVI International Conference on Particles and Nuclei (PANIC02), Osaka, Japan, September 30 - October 4, 200
    corecore