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Abstract

Signal propagation over long distances is a ubiquitous feature of multicellular communities,

but cell-to-cell variability can cause propagation to be highly heterogeneous. Simple models

of signal propagation in heterogenous media, such as percolation theory, can potentially

provide a quantitative understanding of these processes, but it is unclear whether these sim-

ple models properly capture the complexities of multicellular systems. We recently discov-

ered that in biofilms of the bacterium Bacillus subtilis, the propagation of an electrical signal

is statistically consistent with percolation theory, and yet it is reasonable to suspect that

key features of this system go beyond the simple assumptions of basic percolation theory.

Indeed, we find here that the probability for a cell to signal is not independent from other

cells as assumed in percolation theory, but instead is correlated with its nearby neighbors.

We develop a mechanistic model, in which correlated signaling emerges from cell division,

phenotypic inheritance, and cell displacement, that reproduces the experimentally observed

correlations. We find that the correlations do not significantly affect the spatial statistics,

which we rationalize using a renormalization argument. Moreover, the fraction of signaling

cells is not constant in space, as assumed in percolation theory, but instead varies within

and across biofilms. We find that this feature lowers the fraction of signaling cells at which

one observes the characteristic power-law statistics of cluster sizes, consistent with our

experimental results. We validate the model using a mutant biofilm whose signaling proba-

bility decays along the propagation direction. Our results reveal key statistical features of a

correlated signaling process in a multicellular community. More broadly, our results identify

extensions to percolation theory that do or do not alter its predictions and may be more

appropriate for biological systems.

Author summary

Many multicellular systems send signals over long distances by relaying information over

connected cell-to-cell paths. In physics, the statistics of connected path formation are
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described by percolation theory. We previously discovered that the statistics of electrical

signal propagation in communities of the bacterium Bacillus subtilis are consistent with

the predictions of percolation theory. However, we find experimentally that key features

of this system go beyond the simple assumptions of basic percolation theory, which

include site-to-site independence and spatial uniformity of the signaling probability. Why

are the predictions of percolation theory still upheld? Using a computational model, we

find that the cell-to-cell dependence does not change the predictions due to the universal

nature of percolation theory near its critical point, and the spatial variability of the signal-

ing probability actually expands the parameter range over which the predictions hold. We

validate our findings using a mutant bacterial strain. Our work explores the robustness

of percolation theory to its underlying assumptions, and the resulting consequences for

long-range bacterial signaling.

Introduction

Long-range signal transmission is central to the function of many multicellular communities.

However, cell-to-cell variability within these communities [1, 2] can cause some cells not to

participate in signaling, which may degrade or attenuate the signal [3–5]. In physics, signal

transmission in the presence of non-propagating agents is the domain of percolation theory

[6]. As a result, many investigators have turned to percolation theory to describe signal trans-

mission in multicellular systems. In bacterial communities, percolation theory has been used

to predict the scaling laws that result from signal disruption during quorum sensing [7]. In

neuroscience, percolation theory has been used to describe (i) the transition from a fully

connected to a disconnected electrical network in rat hippocampus cultures [8, 9], (ii) the

spatiotemporal structure of viral propagation within astrocyte monolayers [10], and (iii) the

transition from conscious to unconscious brain activities during general anesthesia [11]. In

pancreatic islets, percolation theory has been used to understand the dependence of calcium

wave propagation on the coupling strength of gap junctions between the islet cells [12]. In col-

onies of Spirostomum (an aquatic worm-like cell), percolation theory was recently shown to

describe how the propagation of a hydrodynamic cell-to-cell trigger-wave depends on the col-

ony density [13].

We recently demonstrated that the transmission of an electrical signal from the interior to

the periphery of a biofilm of Bacillus subtilis bacteria is consistent with the predictions of perco-

lation theory [5]. In this system, starvation of the interior cells causes release of intracellular

potassium, which leads to depolarization and potassium release in neighboring cells, resulting

in a cell-to-cell relay wave that propagates to the biofilm periphery [14–16]. The signal tempo-

rarily prevents peripheral cells from taking up nutrients and thus allows nutrients to diffuse to

the interior cells, preserving biofilm viability and increasing its overall fitness [14]. However, it

turns out that not all cells participate in the potassium release: we discovered that the fraction of

participating cells is near the percolation threshold, and that clusters of participating cells have a

size distribution that follows a power law with an exponent predicted by percolation theory [5].

Operating near the percolation threshold allows the biofilm to maintain successful signal trans-

mission while minimizing the number of cells that undergo the costly potassium release [5].

Despite the success of percolation theory as a description of signal transmission within

this system, it is reasonable to suspect that several key assumptions of percolation theory may

require scrutiny in this and many similar multicellular systems [5]. First, percolation theory

assumes that the probability for each cell to participate in signal transmission is independent
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of other cells. However, in reality it may be that the participation probability of a cell is corre-

lated with that of its neighbors. For example, if the molecular mechanism governing participa-

tion is heritable, then one expects the participation of a given cell to be correlated with other

cells in its lineage, which are most likely to be nearby in the densely packed biofilm. Second,

percolation theory assumes that the participation probability does not vary from one biofilm

to another, or from location to location within a biofilm. However, in reality we know that

there is variability across biofilms, and particular mutant strains have spatial variability in the

participation fraction [5]. These considerations raise the question of when and how percola-

tion theory remains a predictive description of signal transmission in biological systems.

Conversely, they suggest a strategy by which deviations from percolation theory would give

important insights about the ways in which a biological system differs from the model assump-

tions [17]. They also raise the broader question of which predictions of a model from statistical

physics are dependent on the model details, and which predictions are universal.

Here we use a combination of simulations and experiments to investigate the statistical

properties of signal percolation in a bacterial biofilm. We find that signal correlations exist

between cells, due to a combination of phenotypic inheritance and spatial proximity of a cell

to its progeny. We find that while these correlations lower the percolation threshold, they are

not sufficiently long-range to affect the cluster size statistics. Instead, we find that variability in

the signaling fraction within and across biofilms affects the statistics by widening the range of

fractions at which one observes the power-law distribution of cluster sizes. We validate our

findings using a mutant biofilm whose participation fraction decays as a function of propaga-

tion distance. Our results demonstrate that certain community-level signaling properties are

robust to cell-level features whereas others are not, and we discuss the implications for biofilm

function.

Results

We first review the key features of electrical signaling in the biofilm [5, 14–16], and those of

percolation theory, as these features will motivate our present results. The electrical signal is

transmitted by cells across the biofilm in a wave-like manner (Fig 1A). We measure the mem-

brane potential of cells during the peak of signal transmission using a fluorescent dye (cyan

in Fig 1B; see Materials and methods). We previously observed a bimodal distribution of dye

intensity across cells [5], which provides a threshold above or below which we define cells as

“on” (participating in the signal) or “off” (not participating in the signal), respectively. This

observation motivates our use of percolation theory, as percolation theory describes the con-

nectivity and spatial statistics of systems on a lattice in which each cell has a probability ϕ to be

on.

We alert the reader that in typical applications of percolation theory, one can measure both

the input (the ability of each component to signal or not) and the output (whether or not each

component actually participates in the signal as it propagates). Here, because we do not know

the molecular mechanism that confers the ability to signal, we can only measure the output.

Nonetheless, we observe in [5] that (i) isolated clusters participate in signaling, and (ii) the

percolation threshold remains predictive of whether the signal propagates across the biofilm.

Therefore, as in [5], we conclude that the signaling mechanism is sufficiently short-range that

percolation is a relevant criterion for propagation, but sufficiently long-range that the output

can be treated as a reasonably good proxy for the input.

Our experiments focus on a 2D cell monolayer at the edge of the biofilm (see Materials and

methods). We previously found that cells are most likely to have six neighbors [5]. For an infi-

nite 2D, six-neighbor lattice, percolation theory predicts that (i) a connected path of on-cells

Correlated percolation in bacteria
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emerges above the critical value ϕc = 1/2, and that (ii) at ϕc, the distribution of on-cell cluster

sizes P(n) becomes a power law [6].

In the experiments, we image a finite window of approximately 35 by 230 cells (see Materi-

als and methods). Finite-size effects can change the value of ϕc at which connectivity sets in,

which we call �
conn
c [6]. Indeed, simulations predict that �

conn
c ¼ 0:45 in this finite geometry

[5]. Finite-size effects should not change the value of ϕc at which P(n) becomes a power law,

which we call �
pow
c ¼ 1=2, so long as

ffiffiffi
n
p

is sufficiently below the smaller lattice dimension.

Fig 1. Signaling probability of each cell is correlated with neighboring cells. (A) Cartoon illustrating electrical signaling wave transmitted across

biofilm. Cyan represents cells that participate in signaling. (B) Zoomed-in snapshot of cells in biofilm during peak of signal transmission (actual

experimental window is approximately 35 cells tall by 230 cells wide). Cyan indicates fluorescence intensity of ThT dye, proportional to membrane

potential. (C) Correlation function is longer-range than that from randomized data (N = 3 biofilms). (D) Correlations are significantly longer than

random both perpendicular (x) and parallel (y) to the signaling direction (p< 0.001 and p = 0.007 assuming Gaussian errors, respectively).

https://doi.org/10.1371/journal.pcbi.1007508.g001
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However, at larger n values the distribution will deviate from a power law, even at �
pow
c , due to

finite-size effects.

We previously observed that the fraction of on-cells in the experiments is ϕ = 0.43 ± 0.02

(mean ± standard error), and that the distribution P(n) of on-cell cluster sizes is a power law

over three decades [5]. The fact that � � �
conn
c suggests that the system sits at the connectivity

threshold. However, the fact that � < �
pow
c raises the question of why a power law is observed,

particularly one with no apparent finite-size effects at large n. To address this question, as well

as the broader question of what features of percolating systems are expected to be robust to the

underlying assumptions about the components, we now investigate the effects of signal corre-

lations and of variability in the signaling fraction.

Participation in signaling is spatially correlated

Percolation theory assumes that a fraction ϕ of on-cells are situated randomly in space. How-

ever, in the biofilm one might expect that on-cells are spatially co-located, for example if par-

ticipating in the signal is a heritable phenotype. To determine whether there are spatial

correlations in on-cells, we measure the radial autocorrelation function

CðrÞ ¼ hsisjir � �
2
; ð1Þ

where s = 1 for on-cells, s = 0 for off-cells, and the average is taken over all pixels i and j whose

separation is r (see Materials and methods). We find that C(r) is a decreasing function of r, as

expected (Fig 1C, cyan curve). We then compare C(r) to the autocorrelation function com-

puted with the locations of on-cells randomized. Specifically, we retain the locations of all

cells and the number of on-cells, but we randomize which cells are on (as would be the case in

percolation theory). We see in Fig 1C that C(r) falls off more steeply in this case (gray curve).

These results suggest that on-cells are more spatially correlated than expected from random

placement.

We next investigate the strength of correlation perpendicular (x) and parallel (y) to the

direction of signal transmission (Fig 1B). We define the correlation lengths as ξx =
R

dx C(x)

and ξy =
R

dy C(y), where C(x) and C(y) are defined as in Eq 1 but restricted to separations per-

pendicular (x) or parallel (y) to the signaling direction, and the integrals run from zero to the

maximal separation values. Even in the randomized data, we see that the correlation length

is larger in the y direction than in the x direction (compare the gray bars in Fig 1D) because

cells are longer than they are wide, and the long axis of each cell is generally oriented in the

signaling direction (Fig 1B). In the actual (non-randomized) data, the correlation lengths are

70% larger than random in both the x and y directions, and both differences are significant

(p< 0.01; Fig 1D). These results suggest that on-cells are significantly correlated both parallel

and perpendicular to the signaling direction.

To quantify the correlation at the single-cell level, we consider the conditional probabilities

p(on|on) and p(off|off), where p(on|on) is the probability that a cell is on given that the cell

above it is also on, and similarly for p(off|off). We then calculate the order parameter

r ¼ pðonjonÞ � pðonjoffÞ; ð2Þ

where p(on|off) = 1 − p(off|off). With no correlation, we have p(on|on) = p(on|off) = ϕ, and

therefore ρ = 0. With perfect correlation, we have p(on|on) = 1 and p(on|off) = 0, and therefore

ρ = 1. Thus, ρ quantifies the cell-to-cell correlation in the signaling direction on a scale from

zero to one.

We estimate the conditional probabilities, and thus ρ, in two ways (Fig 2). First, because

cell division is usually parallel to the signaling direction, we track division events that occur in
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between signal pulses (Fig 2A; see Materials and methods). We then count the number of

times that the top cell has the same or different signaling state as the bottom cell. From this

method we obtain ρdiv = 0.38 (Fig 2B). Second, we estimate the conditional probabilities

directly from pairs of cells that are adjacent to each other in the signaling direction during sig-

naling (Fig 2C; see Materials and methods). From this method we obtain ρadj = 0.17 (Fig 2D).

These results confirm at the single-cell level that spatial correlations exist in the signaling

direction (ρadj > 0) but suggest that these correlations are less strong than those produced

directly by division (ρadj < ρdiv).

Mechanistic model of correlated signaling

To understand the experimental results above, we propose a mechanistic model of spatially

correlated cell signaling. We hypothesize that the signaling state is heritable during cell divi-

sion with a certain probability, and that cell displacement can occur at the leading edge as the

biofilm grows. The assumption that cells possess a signaling state variable is supported by the

observation that a cell generally does not switch its on/off signaling behavior between succes-

sive pulses in the experiments [5].

Specifically, as shown in Fig 3A, we generate a 2D, six-neighbor lattice of rectangular cells

with aspect ratio 2 (the approximate experimental value) in the following way. Each cell divides

after a time τ drawn from a Gaussian distribution with mean �t and standard deviation δτ. The

“mother” cell (m) retains its location and signaling state, while the “daughter” cell (d) occupies

one of the eligible neighboring locations with equal probability. Eligibility requires that the

Fig 2. Order parameter ρ quantifies degree of spatial correlations. (A, B) Lineage-tracing experiments yield ρdiv = 0.38 (N = 49 division events). (C,

D) Spatial analysis of the biofilm images yield ρadj = 0.17 (N = 51 cell pairs).

https://doi.org/10.1371/journal.pcbi.1007508.g002
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neighboring location either be empty or be occupied by a neighboring cell (n) that, when dis-

placed by the division along the same direction, would occupy an empty location (Fig 3A).

Because the biofilm is growing downward, the eligible locations will most often be the location

directly below and, with lower probability, the locations below-and-to-the-right and below-

and-to-the-left. The signaling state of the daughter, given that of the mother, is determined

from the division parameter ρdiv and the fraction of on-cells ϕ according to

pðonjonÞ ¼ �þ rdiv � �rdiv; ð3Þ

pðonjoffÞ ¼ � � �rdiv; ð4Þ

which follow from Eq 2 and the requirement that the fraction of on-cells remains ϕ throughout

the process (see Materials and methods). We produce a 100 by 230 lattice of cells by initializing

the top row randomly and generating the next 99 rows according to the above mechanism.

Then we remove the top 55 and bottom 10 rows, leaving a 35 by 230 cell window as in the

experiments. This procedure allows the mechanism to achieve statistical steady state and

focuses on the biofilm edge as in the experiments.

We find that the spatial statistics are not sensitive to the value of dt=�t, so long as it is greater

than zero, and therefore we average our results over the range 0 < dt=�t < 1 (rejecting samples

with τ� 0 for large δτ). We also find that allowing neighbor cell displacement is necessary to

generate correlations in the x direction, but that allowing two or more levels of displacement

does not qualitatively change the results. Thus, the only parameters in the model are ϕ and

ρdiv, which we set from the experiments as ϕ = 0.43 [5] and ρdiv = 0.38 (Fig 2B).

This model, with no free parameters, makes three predictions. Specifically, the model pre-

dicts that (i) the correlation length in the x direction is significantly different from random

(Fig 3B), (ii) the correlation length in the y direction is significantly different from random

(Fig 3B), and (iii) the spatial correlation parameter measured from adjacent cells in the y direc-

tion after the biofilm is generated is ρadj = 0.19 ± 0.01 (Fig 3C). The model output ρdiv is

reduced from the model input ρdiv = 0.38 due to the stochasticity in division times, neighbor

selection, and cell displacement. Predictions (i) and (ii) are consistent with the experiments,

as both the x and y correlation lengths were found to be significantly different than random

Fig 3. Mechanistic model of correlated signaling captures experimental features. (A) Mother cell (m) produces daughter cell (d) with correlated

signaling state at any neighboring site at which a maximum of one neighbor cell (n) is displaced. Cyan indicates that cell has the ability to signal. (B)

Correlations are significantly longer than random both perpendicular (x) and parallel (y) to the signaling direction (N = 104 lattices; p< 0.001 for both

assuming Gaussian errors). Compare to experiments in Fig 1D. (C) Stochasticity in division times, neighbor selection, and cell displacement reduces

correlation parameter from ρdiv = 0.38 to ρadj = 0.19 ± 0.01, close to experimentally measured ρadj = 0.17 (N = 104 lattices).

https://doi.org/10.1371/journal.pcbi.1007508.g003
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(Fig 1D). Prediction (iii) is also consistent with the experiments, as ρadj was measured to be

0.17 (Fig 2D), which is very close to 0.19 ± 0.01. We have also checked that these predictions

remain unchanged when accounting for the fact that on-cells grow more slowly than off-cells

[5] (see Materials and methods). The fact that all three predictions are validated by the experi-

ments gives us confidence that the model captures the basic underlying mechanism, especially

because it has no free parameters.

Impact of correlations on spatial statistics

We now use our mechanistic model to investigate the impact of the spatial correlations on the

statistical properties of the biofilm. First we focus on the connectivity: the probability, over an

ensemble of simulated biofilms, that a connected path of on-cells exists from the top to the bot-

tom of the lattice. The connectivity is expected to show a sharp transition from 0 to 1 at a criti-

cal fraction of on-cells �
conn
c . For an infinite lattice (in 2D with six neighbors), �

conn
c ¼ 1=2 [6].

Finite-size effects reduce the sharpness, but �
conn
c can still be defined as the value of ϕ for which

the connectivity is 50%. For a finite lattice of the approximate size of the experimental window

(35 cells tall by 230 cells wide), without correlations, we previously found �
conn
c ¼ 0:45 [5] (Fig

4A, dark green curve). With correlations, using our mechanistic model with ρdiv = 0.38, we

find �
conn
c ¼ 0:4 (Fig 4A, light green curve). More generally, the connectivity threshold is

shown as a function of ρdiv in Fig 4B, and we see that as rdiv ! 1, �
conn
c becomes close to zero,

even with the stochasticity inherent in the model. Thus, spatial correlations reduce the connec-

tivity threshold. This makes sense, as correlations increase the probability of connected on-

cells, particularly in the signaling direction, and this lowers the fraction of on-cells needed to

created a connected path.

Second, we investigate the impact of correlations on the distribution of on-cell cluster

sizes P(n). The distribution is expected to become a power law at a critical fraction of on-cells

�
pow
c ¼ 1=2 [6]. The experimental fraction of on-cells is ϕ = 0.43 ± 0.02 [5], which is lower than

�
pow
c . In simulations without correlations, at ϕ = 0.43, we find that P(n) acquires a rolloff (when

viewed on a log-log scale) at large n (Fig 4C, dark red curve). The rolloff indicates that the dis-

tribution is becoming more exponential, as expected for � < �
pow
c . However, in experiments,

we find that P(n) maintains the power law dependence, with no rolloff, for three decades, i.e.

out to n = 103 [5]. Because we have seen that spatial correlations preserve connectivity at lower

Fig 4. Spatial correlations increase connectivity but have little effect on cluster size distribution. (A) Connectivity, defined as probability that a

connected path of on-cells exists, occurs at lower on-cell fraction ϕ as correlation parameter ρdiv increases (N = 103 lattices). (B) Connectivity threshold

�
conn
c , defined as ϕ value for which connectivity is 50%, decreases with ρdiv (N = 103 lattices). (C) Spatial correlations (ρdiv = 0.38) have little effect on

distribution, in particular not removing exponential rolloff at large n (N = 103 lattices).

https://doi.org/10.1371/journal.pcbi.1007508.g004
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ϕ (Fig 4A and 4B), we hypothesize that correlations may also preserve the power law depen-

dence of P(n) at lower ϕ, and thus explain the experimental observation. Surprisingly, using

our mechanistic model, we find that the spatial correlations actually have little impact on P(n)

(Fig 4C, light red curve): the rolloff is slightly shifted to larger n, but it is certainly still present

over the three-decade range.

Why do correlations not change the distribution of cluster sizes? Renormalization-group

arguments from statistical physics imply that correlations do not change the critical properties

of percolation theory if the correlations are sufficiently short-range [18]. The intuitive reason

can be seen from a site-decimation procedure [6], as illustrated in Fig 5A. We imagine deci-

mating every other cell in each column (red X’s), with each remaining cell expanding to fill the

space below it. Fig 5A illustrates that the resulting lattice remains triangular (green lines). Fur-

thermore, because the probability of any cell to be on is ϕ, the fraction of on-cells remains ϕ
after decimation. Finally, the new conditional probabilities after one round of decimation are

p1ðonjonÞ ¼ pðonjonÞpðonjonÞ þ pðonjoffÞpðoff jonÞ; ð5Þ

p1ðonjoffÞ ¼ pðonjonÞpðonjoffÞ þ pðonjoffÞpðoff joffÞ; ð6Þ

which follow from the rules of probability and the assumption that the signaling state is spa-

tially Markovian, i.e. the daughter is conditionally independent of the grandmother given the

mother (see Materials and methods). As a result, the correlation parameter after one round of

decimation is ρ1 = p1(on|on) − p1(on|off) = [p(on|on) − p(on|off)]2 = ρ2, where the first and

last steps use the definition in Eq 2, and the middle step inserts the expressions in Eqs 5 and 6

and simplifies (see Materials and methods). Similarly, after j rounds of decimation we have

ρj = ρj+1. Because ρ< 1, we see that ρj! 0 as j!1. Thus, correlations vanish upon repeated

rounds of decimation and renormalization. This means that correlations are not expected to

change the critical properties of the distribution P(n).

The above intuition only holds if the correlations are sufficiently short-range. Indeed, Eqs 5

and 6 assume that the correlations are minimally short-range, namely Markovian. In general,

it has been shown that spatial correlations only affect the critical properties of percolation if

they decay as a power law, specifically C(r)� r−a with a> 3/2 in 2D [18]. As seen in Fig 5B,

Fig 5. Short-range correlations do not affect critical properties. (A) Illustration of the renormalization argument: upon site decimation, lattice

remains triangular, ϕ remains constant, and ρ vanishes. (B) Correlation function in experiments is short-range, i.e. sub-power-law (N = 3 biofilms).

https://doi.org/10.1371/journal.pcbi.1007508.g005
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the correlations in the experimental data are much shorter-range than a power law. This sug-

gests that the spatial correlations that we observe in the biofilm are not sufficiently long-range

to affect the critical properties. Together with Fig 4C, we conclude that spatial correlations are

not sufficient to explain the experimentally observed power law dependence of P(n) over three

decades [5].

Variability in signaling fraction

If spatial correlations cannot explain the experimentally observed power law, then what can?

An important feature of the experiments that is not yet accounted for in the model is variabil-

ity in the on-cell fraction ϕ. In particular, we previously observed that the value of ϕ is roughly

Gaussian-distributed across 12 experiments with a mean of �� ¼ 0:43 and a standard deviation

of σϕ = 0.07 (from which the standard error of 0:07=
ffiffiffiffiffi
12
p

¼ 0:02 comes) [5]. Furthermore,

subdividing each of the 12 images into either 4 or 16 equal parts with the same aspect ratio

as the original image, we find that the standard deviation of the on-cell fraction across parts

(averaged over all images) is σϕ = 0.04 (4 parts) or σϕ = 0.05 (16 parts). Because these values are

similar to σϕ = 0.07, we conclude that the variability within biofilms is similar to that across the

biofilms in our experiments.

Some variability is expected from finite size effects. Specifically, in basic percolation theory,

binomial statistics dictate that the standard deviation in the fraction of on-cells would be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ��ð1 � ��Þ

p
=N ¼ 0:006 in a biofilm with N = 230 × 35 = 8,050 cells. In our mechanistic

model with correlations, we find that the standard deviation is similarly small at 0.009. Because

these values are much smaller than the observed value of σϕ = 0.07, we conclude that the exper-

imental variability is not due to finite size effects alone, and that it is necessary to explicitly

incorporate variability into the model.

Fig 6. Variability can lead to power-law cluster size distribution, even for ϕ< ϕc. (A) In the model, variability (σϕ = 0.07) removes rolloff, causing

distribution to approach a power law over three decades (N = 103 lattices). (B) In the experiments, cluster size distributions from individual biofilms are

power laws without significant rolloff, consistent with the model and the fact that we find variability in ϕ within each biofilm. Data are from [5] but

processed individually for each biofilm.

https://doi.org/10.1371/journal.pcbi.1007508.g006
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To incorporate variability in the on-cell fraction, we draw ϕ for each lattice from a Gaussian

distribution with standard deviation σϕ. Because we have found that correlations have little

effect on P(n), we set ρdiv = 0 from here on for simplicity. The results are shown in Fig 6A, and

we see that σϕ has a significant effect on the distribution. In particular, for the experimental

value σϕ = 0.07 (light green curve), we see that the exponential rolloff at large n is removed,

extending the range of the power law out to n� 103 as observed in the experiments [5]. The

intuitive reason is that a non-negligible fraction of lattices in the ensemble have ϕ values that

are equal to or greater than �
pow
c ¼ 1=2. Because ϕ is higher in these lattices, they are more

likely to have large clusters. Therefore, these lattices dominate the distribution at large n, elimi-

nating the rolloff. Thus, variability in ϕ effectively widens the range of mean �� values at which

a power law distribution is observed. We conclude that the experimental variability in ϕ across

biofilms is sufficient to explain the experimentally observed power-law distribution.

Given that we also observe variability in ϕ within each biofilm, to a similar degree as across

biofilms, our results suggest that the cluster size distribution from each biofilm individually

should follow a power law without a significant rolloff. We test this hypothesis in Fig 6B by

plotting the data from [5] separately for each biofilm. We see that indeed, the individual distri-

butions follow a power law and do not exhibit significant rolloffs. This result suggests that the

mechanism we identify above, in which variability widens the range of �� values at which a

power law distribution is observed, also applies at the individual biofilm level. It also shows

that the signaling statistics are reproducible from biofilm to biofilm and thus constitute a

plausible feature that could be optimized for biological function, as suggested in our previous

work [5].

Model validation using mutant strain

How can our model be tested with further experiments? One approach is to investigate a sys-

tem with a different fraction of on-cells and see if our model remains valid. We previously

investigated mutant strains with different on-cell fractions, including the ΔtrkA strain with

�� ¼ 0:13 and σϕ = 0.1 [5]. As seen in Fig 7A (light red curve), basic percolation theory (ρdiv =

0, σϕ = 0) predicts that a system with an on-cell fraction of ϕ = 0.13 would have a distribution

of cluster sizes P(n) that is entirely exponential because 0.13 is much lower than �
pow
c ¼ 1=2.

However, the ΔtrkA strain differs from the wild-type strain in that the fraction of on-cells is

not constant in space, but rather decreases along the signaling direction [15] with a character-

istic lengthscale of approximately λ = 15 μm, or about 7 cell lengths [5]. The reason for this

decrease is likely that the signal is dying out due to insufficient connectivity of the on-cells.

Therefore, in the case of ΔtrkA, the on-cell fraction is sufficiently low that it is likely no longer

fair to treat the ability to signal and the act of signaling as equivalent. Because the experiments

measure the latter, we must incorporate the observed spatial decrease into the model. To do

so, we allow the on-cell fraction to vary as ϕ(y) = ϕ0e−y/λ, where ϕ0 is set to ensure that the spa-

tial average of ϕ(y) is 0.13. We see in Fig 7A (dark red curve) that this feature extends the distri-

bution to larger cluster sizes n. The reason is similar to that given above regarding variability:

the portions of the lattice in which ϕ is large contain large clusters, thereby enhancing the

large-n region of the distribution. Nonetheless, the distribution remains far from a power law

in its shape. In particular, a clear exponential rolloff at large n is evident.

If our main finding above is correct, namely that variability in ϕ across biofilms is a crucial

determinant of the shape of P(n), then we must also incorporate into our model the variability

σϕ = 0.1 observed for the ΔtrkA strain. Indeed, we find that doing so has a major effect on the

distribution (Fig 7A, green curve). Specifically, it removes the exponential rolloff, resulting in a

power-law distribution over almost three decades. This is a strong prediction, considering that
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�� ¼ 0:13 is much lower than �
pow
c ¼ 1=2, and that without variability the shape is far from a

power law even after accounting for the spatial dependence of ϕ.

To test this prediction, we measure the distribution of cluster sizes in the ΔtrkA biofilms

(see Materials and methods). Remarkably, the result, shown in Fig 7B, is a distribution that is

roughly a power law over almost three decades, consistent with the model prediction. Indeed,

the power-law exponent of 2.08 estimated from the model distribution via a maximum likeli-

hood technique [19] (Fig 7A, green line) is consistent with the slope of the experimental

distribution (Fig 7B, green line). This result validates our model. In particular, it supports the

finding that variability of the signaling fraction across biofilms plays an important role in shap-

ing the statistical properties of the system.

Discussion

We have shown that experimentally observed features that go beyond the basic assumptions of

percolation theory, including spatial correlations, variability, and non-uniformity, can have

important consequences for signal propagation in a bacterial community. Using a mechanistic

model that accounts for heritability in a cell’s propensity to participate in signaling, we have

found that signal correlations decrease the fraction of participating cells needed to create a

connected path, but have little effect on the cluster statistics. In contrast, variability of the sig-

naling fraction across samples has a significant effect on the statistics, in particular producing

a power-law distribution of cluster sizes at signaling fractions lower than the expected critical

fraction from percolation theory. We have validated our model using a mutant strain, in par-

ticular finding that both spatial decay and variability in the signaling fraction play a crucial

role in shaping the signaling statistics.

While it is clear that key observations in this system are consistent with the predictions of

percolation theory (the fraction of signaling cells is very close to the percolation threshold and

Fig 7. Statistics of mutant ΔtrkA strain. (A) We progressively incorporate into the model the on-cell fraction ϕ = 0.13 (light red), the exponential

decay of ϕ in space with lengthscale λ = 7 cells (dark red), and the variability σϕ = 0.1 across lattices (green); N = 103 lattices for each. Resulting P(n) is a

power law (green) despite the fact that 0.13 is far below the critical fraction �
pow
c ¼ 1=2. (B) P(n) from ΔtrkA data is a power law whose exponent is

consistent with the model (N = 7 biofilms).

https://doi.org/10.1371/journal.pcbi.1007508.g007
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the cluster size distribution is a power law with the predicted exponent [5]), the deviations of

other observations from either the assumptions or predictions of percolation are informative.

In this sense we recognize that percolation theory is a toy model. Searching for deviations

from the toy model has allowed us infer information about the biological mechanism, and

then develop an enhanced model of percolation that is more appropriate. The approach of

extending percolation to account for additional features has a long precedent in the literature,

with variants including explosive percolation, fractional percolation, correlated percolation,

bootstrap percolation, invasion percolation, and dynamical percolation [6, 20–22]. This

approach is particularly suitable for biological systems, where it is natural to expect that the

complexities of growth and variability may lead to observable departures from simple textbook

models.

We found that incorporating the experimentally observed variability and non-uniformity

of the signaling fraction into the model was necessary to explain the experimentally observed

cluster statistics, whereas incorporating the experimentally observed spatial correlations in sig-

naling was not necessary. This finding implies that certain underlying cell-level features are

important in determining population-level statistical properties, whereas others are not. This

categorization is consistent with approaches from statistical physics, particularly the renorma-

lization group, which reflect the powerful notion that some microscopic details are relevant for

macroscopic properties, whereas others are provably irrelevant [23]. Indeed, we explain our

finding that spatial correlations do not affect the cluster statistics using a renormalization argu-

ment (Fig 5), as well as more rigorous known results from statistical physics [18]. It will be

interesting to see what other cell-level features are relevant or irrelevant for capturing popula-

tion-level phenomena in multicellular systems.

Finite-size effects play an important role in our results. In particular, our experimental

observation window is sufficiently short in the signaling direction (�35 cells) that spatial cor-

relations in the signaling propensity have a measurable effect on the connectivity (Fig 4). Yet,

the window is wide perpendicular to signaling (�230 cells), and thus the window area is suffi-

ciently large that the spatial correlations have little effect on the cluster size statistics. This

choice of window size follows from experimental constraints and the desire to focus on the

short and wide biofilm edge, where signaling is most important for function [15]. Nonetheless,

it is an interesting open question how the finite size and aspect ratio of the system set distinct

thresholds for the relevance of correlations to the connectivity and cluster statistics.

Dimensionality also plays an important role in our results. Because the biofilm edge is

where cell growth is most pronounced, it is quasi-two-dimensional. In fact, biofilm formation

itself can promote cell spreading via osmotic pressure gradients, reducing biofilm thickness at

the edge [24]. This is part of the reason that our experiments have focused on 2D monolayers

of cells. However, the properties of percolation theory depend critically on the dimensionality

of the system [6]. In particular, the percolation threshold is generally smaller in 3D lattices

than in 2D lattices [25] because there are more available paths for the signal to take. This obser-

vation suggests that a lower fraction of signaling cells is necessary in the bulk of the biofilm

than at its edge. This prediction is currently difficult to test, as the 2D nature of our experi-

ments is crucial for obtaining fluorescence data at the single-cell level.

The fact that spatial correlations lower the connectivity threshold in a finite system may

help explain why the biofilm has an on-cell fraction of ϕ = 0.43 ± 0.02 [5]. Naive percolation

theory predicts a threshold of �
conn
c ¼ 1=2 [6], which the biofilm does not meet. Accounting

for finite-size effects lowers the threshold to �
conn
c ¼ 0:45 [5] (Fig 4), which the biofilm barely

meets. Accounting for correlations lowers the threshold further to �
conn
c ¼ 0:4 (Fig 4), which

the biofilm meets comfortably. Thus, correlations provide some leeway between the necessary
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and observed signaling fraction, which may enhance the reliability of signaling or make it

robust to errors.

Although we observe spatial correlations in the signaling activity, and the results are consis-

tent with a model that assumes inheritance of the signaling state, the inheritance mechanism is

unknown. B. subtilis cells maintain phenotypic states through intracellular genetic networks

that control the production of transcription factors [26]. Moreover, the inheritance of tran-

scription factors and other proteins from parent cells to daughter cells can maintain specific

cell types for several generations, leading to spatial correlation of cell types [27]. B. subtilis has

even evolved the ability to control the number of generations over which certain phenotypic

states are maintained [28]. Such a mechanism could drive the inheritance in signaling state

that we observe here: the transcription factors regulating the expression or non-expression of

ion channels, for example, could be passed from mother to daughter.

The effect of spatial correlations is a general question that is fundamental to understanding

multicellular behaviors. The length scale of cell-to-cell signaling in quorum sensing bacterial

communities depends on the establishment of spatial correlations [7, 29]. Moreover, the inter-

play of spatial heterogeneity and signaling lengthscale dictates the cooperativity of pathogenic

Pseudomonas aeruginosa biofilms [30]. In eukaryotes, spatial correlations in cell-substrate

interactions can drive collective cell migration [31], which is a fundamental multicellular pro-

cess in tissue development [32] and wound healing [33].

Our study motivates further avenues of exploration in both statistical physics and cell biol-

ogy. In statistical physics, our study motivates more general investigations of whether and how

particular microscopic features affect macroscopic properties of percolation. The effects of spa-

tial correlations in the site occupation probability are relatively well understood [20, 22, 34–

37], whereas the effects of variability and non-uniformity in the site occupation probability are

still relatively open questions [38, 39]. In cell biology, our study builds on previous work [5, 8–

13] that demonstrates the utility of percolation theory as a quantitative and predictive descrip-

tion of multicellular phenomena. It will be interesting to see in what biological systems ideas

from percolation theory will provide useful insights next.

Materials and methods

Experimental methods

Microfluidics and experimental conditions. Bacterial strains and growth conditions

were as in [5]. We performed experiments in Y04D microfluidic plates using the CellASIC

ONIX microfluidic system (EMD Millipore). Cells were imaged at the edge of biofilms and

were confined to a single-cell layer by the PDMS structures of the microfluidic chamber. Each

microscope field of view was roughly 330 μm × 70μm and contained 8,000 − 10,000 cells.

Every 5 minutes, we took phase contrast and fluorescence images on an Olympus IX83

inverted microscope with autofocus and a 40X, 0.6 NA air objective.

To probe membrane potential, we used the cationic fluorescent dye Thioflavin-T (ThT),

which acts as a Nernstian voltage indicator [15]. When cells are hyperpolarized, they retain

more of the dye and have a higher signal. ThT was present in the media at a concentration

of 10 μM. We considered a cell to be an on-cell if its mean ThT signal exceeded a particular

threshold during a signal pulse [5].

Computation of correlation function. To compute correlation functions, we first thre-

sholded ThT images so that they were binary: biofilm regions above the ThT threshold would

appear white and sub-threshold regions would appear black. We then applied a 2-pixel radius

median filter to thresholded images so that clusters of on-cells became contiguous white

regions. From this image, we created a 2D autocorrelation plot using the ImageJ command FD

Correlated percolation in bacteria
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Math. The resulting plot was mean-subtracted and normalized such that the origin had a value

of 1 and decayed to 0 away from the origin (see source code for the Radially Averaged Auto-

correlation ImageJ plugin for further details).

To compute the radial autocorrelation curves (Fig 1C), we took a radial average of this 2D

correlation plot. For x and y correlation curves, we took profiles of the correlation plot along

the x and y axes, respectively.

To construct randomized images for such correlation computations, we took segmented

biofilm images and randomly assigned a fraction of cells to be on and made them white. We

then computed the autocorrelation curve on these images the same way as with the experimen-

tal images.

Lineage tracing for ρdiv. To determine ρdiv, we tracked individual cell lineages over time

within biofilms using the mTrackJ imageJ plugin [40]. For each lineage, we recorded the firing

state (i.e. on or off) of the parent cell and the daughter cells. Using many lineages, we com-

puted the conditional probabilities p(on|on), p(on|off), p(off|on), and p(off|off). We then com-

puted the order parameter ρdiv using Eq 2.

Spatial analysis for ρadj. To determine ρadj, we segmented cells in static images taken dur-

ing signal pulses and determined the firing state of each cell (i.e. on or off). Because the electri-

cal signal propagates in the direction of cell growth, cells are generally oriented along the

signaling direction (Fig 1B). The adjacent cell in each case was defined as the cell whose bot-

tom edge was closest to the given cell’s top edge, and whose centroid was within half the aver-

age cell width. We then computed the conditional probabilities p(on|on), p(on|off), p(off|on),

and p(off|off) for the firing state of a cell given the state of the adjacent cell. We then computed

the order parameter ρadj using Eq 2.

Image analysis for ΔtrkA. We evaluated the cluster size distribution for ΔtrkA biofilms in

Fig 7B by first segmenting single biofilm cells in phase images using the Trainable Weka Seg-

mentation plugin in ImageJ. We then thresholded the corresponding ThT images as described

in the above section on computing correlation curves. Each contiguous white region in the

thresholded image was a cluster of on-cells. We then counted how many segmented cells had

the majority of their area within each cluster. The curve in Fig 7B plots the normalized histo-

gram of these cluster sizes.

Theoretical methods

Mechanistic model. To derive Eqs 3 and 4, we require that the fraction of on-cells is ϕ at

each step in the growth process. Specifically, the rules of probability state that

pðdÞ ¼
X

m

pðd;mÞ ¼
X

m

pðdjmÞpðmÞ; ð7Þ

where d is the signaling state (on, off) of the daughter, and m is the signaling state (on, off) of

the mother. Taking d = on and requiring that p(on) = ϕ and p(off) = 1 − ϕ, Eq 7 becomes

� ¼ pðonjonÞ�þ pðonjoffÞð1 � �Þ: ð8Þ

Solving for ϕ, we obtain

� ¼
pðonjoffÞ

1þ pðonjoffÞ � pðonjonÞ
: ð9Þ

Combining this equation with Eq 2 and solving for the conditional probabilities, we obtain

Eqs 3 and 4.
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Differential growth rates. We previously observed that signal participation reduces the

cell elongation rate [5], implying that on-cells grow more slowly than off-cells. Specifically, Fig

1B of [5] shows that the elongation rate is reduced by a factor of about 4 at peak signaling activ-

ity. On-cells signal for about 20 minutes (Fig 4E of [5]), whereas pulses occur every 80 minutes

or so (Fig S4 of [5]). Therefore the net growth rate ratio of on-cells to off-cells is approximately

γ = (1/4)(20/80) + (1)(60/80)� 80%.

To incorporate this feature into the model, we take the mean division time to be �t and �t=g

for off-cells and on-cells, respectively. Differential growth rates change the resulting fraction

of on-cells in the lattice, and therefore Eqs 3 and 4 must be modified to maintain this fraction

at ϕ. Specifically, using the shorthand q� p(on|on) and r� p(on|off) and recognizing that

p(off|on) = 1 − q and p(off|off) = 1 − r, the deterministic dynamics of the number of on- and

off-cells are

_non ¼ gqnon þ rnoff ; ð10Þ

_noff ¼ gð1 � qÞnon þ ð1 � rÞnoff ; ð11Þ

where time is scaled by �t. At long times, the larger of the two eigenvalues of this linear dynam-

ical system is

lþ ¼
1

2
1þ gq � r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ gq � rÞ2 � 4gðq � rÞ
q� �

; ð12Þ

and the ratio of the two components of the corresponding eigenvector gives the ratio of non

and noff. Setting the ratio of non and non + noff to ϕ obtains

� ¼
r

lþ þ r � gq
: ð13Þ

Note that taking γ = 1 makes λ+ = 1, and Eq 13 recovers Eq 9. Combining Eqs 12 and 13

with ρ = q − r (Eq 2) and solving for q and r obtains

pðonjonÞ ¼ �þ
rð1 � �Þ

1 � ð1 � gÞ�
; ð14Þ

pðonjoffÞ ¼ � �
g�r

1 � ð1 � gÞ�
: ð15Þ

These expressions replace Eqs 3 and 4, respectively. This derivation ignores the differential

crowding effects in the simulation due to the differential growth rates, but for ϕ = 0.43, ρ =

0.38, and γ = 0.8 we still find that the resulting fraction of on-cells in the lattice is 0.428 ± 0.009,

which includes 0.43 within error.

In this model with differential growth rates, we find that all of the predictions of Fig 3

remain unchanged: the correlation lengths in both the x and y directions are significantly

larger than random (p< 0.001 for both), and ρadj = 0.19 ± 0.02, which actually now agrees

with the measured 0.17 within error.

Renormalization argument. To derive Eqs 5 and 6, we recognize that the conditional

probability of the daughter given the mother after one round of decimation is the conditional

probability of daughter given the grandmother before the decimation. Again using the rules of
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probability, we write the latter as

pðdjgÞ ¼
X

m

pðd;mjgÞ ¼
X

m

pðdjm; gÞpðmjgÞ; ð16Þ

where g is the signaling state (on, off) of the grandmother. The spatial Markovian assumption

states that d is conditionally independent of g given m. Therefore we have p(d|m, g) = p(d|m),

and Eq 16 becomes

pðdjgÞ ¼
X

m

pðdjmÞpðmjgÞ: ð17Þ

Setting d = on and g = on gives Eq 5. Setting d = on and g = off gives Eq 6.

To derive the relation ρ1 = ρ2 below Eq 6, we insert Eqs 5 and 6 into the definition ρ1 =

p1(on|on) − p(on|off). Again using the shorthand q� p(on|on) and r� p(on|off) and recogniz-

ing that p(off|off) = 1 − q and p(off|off) = 1 − r, this insertion obtains

r1 ¼ q2 þ rð1 � qÞ � qr � rð1 � rÞ ¼ q2 � 2qr þ r2 ¼ ðq � rÞ2: ð18Þ

Because ρ = q − r (Eq 2), we see that ρ1 = ρ2.
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Andrew Mugler.

References
1. Li B, You L. Predictive power of cell-to-cell variability. Quantitative Biology. 2013; 1(2):131–139. https://

doi.org/10.1007/s40484-013-0013-3

2. Symmons O, Raj A. What’s Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeter-

minism. Molecular Cell. 2016; 62(5):788—802. https://doi.org/10.1016/j.molcel.2016.05.023.

3. Steinberg BE, Glass L, Shrier A, Bub G. The role of heterogeneities and intercellular coupling in wave

propagation in cardiac tissue. Philosophical Transactions of the Royal Society A: Mathematical, Physi-

cal and Engineering Sciences. 2006; 364(1842):1299–1311. https://doi.org/10.1098/rsta.2006.1771

4. Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature

Reviews Neuroscience. 2006; 7(12):932. https://doi.org/10.1038/nrn2023

Correlated percolation in bacteria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007508 December 2, 2019 17 / 19

https://doi.org/10.1007/s40484-013-0013-3
https://doi.org/10.1007/s40484-013-0013-3
https://doi.org/10.1016/j.molcel.2016.05.023
https://doi.org/10.1098/rsta.2006.1771
https://doi.org/10.1038/nrn2023
https://doi.org/10.1371/journal.pcbi.1007508


5. Larkin JW, Zhai X, Kikuchi K, Redford SE, Prindle A, Liu J, et al. Signal Percolation within a Bacterial

Community. Cell systems. 2018; 7(2):137–145. https://doi.org/10.1016/j.cels.2018.06.005

6. Stauffer D, Aharony A. Introduction to percolation theory. Taylor & Francis; 1994.

7. Silva KPT, Yusufaly TI, Chellamuthu P, Boedicker JQ. Disruption of microbial communication yields a

two-dimensional percolation transition. Physical Review E. 2019; 99(4):042409. https://doi.org/10.

1103/PhysRevE.99.042409

8. Breskin I, Soriano J, Moses E, Tlusty T. Percolation in living neural networks. Physical review letters.

2006; 97(18):188102. https://doi.org/10.1103/PhysRevLett.97.188102

9. Eckmann JP, Feinerman O, Gruendlinger L, Moses E, Soriano J, Tlusty T. The physics of living neural

networks. Physics Reports. 2007; 449(1-3):54–76. https://doi.org/10.1016/j.physrep.2007.02.014
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