8 research outputs found

    Facial shape analysis based on Euclidean distance matrix analysis

    No full text
    Euclidean Distance Matrix Analysis (EDMA) is a relative and effective method for morphologic research, which is used to analyze subject forms by special landmarks determined by the anatomical prominences. Many researches have forced on the facial shape analysis, but there are few reports on the difference in the facial shape of different age groups. In this paper, we studied normal facial shape of adults (male and female) with different age using EDMA. By comparing the facial shape data of different age groups, we found that the change of male facial shape is more significant than female. The conclusions and related data are important, which can be used in the future research

    Does the Expansion of Urban Construction Land Promote Regional Economic Growth in China? Evidence from 108 Cities in the Yangtze River Economic Belt

    No full text
    Since the reform and opening up, China’s economy has maintained rapid growth. At the same time, the process of urbanization in China has been accelerating and the scale of urban construction land has expanded accordingly. The purpose of the research is to explore whether there is an inevitable connection between the expansion of urban construction land and economic growth. This study uses 108 prefecture-level cities in the Yangtze River Economic Belt as an example. Considering panel data from 2005 to 2015, the spatial econometric model was used to explore the impact of urban construction land expansion on regional economic growth. The results are as follows: (1) The expansion of construction land in cities in the Yangtze River Economic Belt has a significant impact on economic growth but the extent of the impact is not as great as that of capital stock. (2) In the Yangtze River Economic Belt, the expansion of urban construction land in a certain area has not only a positive effect on the local economic growth but also a certain spillover effect and it can promote the economic development level of the adjacent areas in the economic belt. (3) Although the expansion of urban construction land along the Yangtze River Economic Belt promotes economic growth, there are obvious differences between regions. The expansion of urban construction land in the central region of the Yangtze River Economic Belt has a significant driving effect on economic growth. However, the expansion of urban construction land in the eastern and western regions has no significant effect on the economic growth of the respective regions. Finally, based on the above conclusions, this paper proposes corresponding policy recommendations for economic development in different regions. These research conclusions will also facilitate the follow-up of other researchers to further explore the driving factors of the economic development of many prefecture-level cities in the Yangtze River Economic Belt and the related mechanisms for the expansion of construction land to promote economic growth

    Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese

    No full text
    Facial shape differences are one of the most significant phenotypes in humans. It is affected largely by skull shape. However, research into the genetic basis of the craniofacial morphology has rarely been reported. The present study aimed to identify genetic variants influencing craniofacial morphology in northern Han Chinese through whole-exome sequencing (WES). Phenotypic data of the volunteers' faces and skulls were obtained through three-dimensional CT scan of the skull. A total of 48 phenotypes (35 facial and 13 cranial phenotypes) were used for the bioinformatics analysis. Four genetic loci were identified affecting the craniofacial shapes. The four candidate genes are RGPD3, IGSF3, SLC28A3, and USP40. Four single-nucleotide polymorphism (SNP) site mutations in RGPD3, IGSF3, and USP40 were significantly associated with the skull shape (p<1x10(-6)), and three SNP site mutations in RGPD3, IGSF3, and SLC28A3 were significantly associated with the facial shape (p<1x10(-6)). The rs62152530 site mutation in the RGPD3 gene may be closely associated with the nasal length, ear length, and alar width. The rs647711 site mutation in the IGSF3 gene may be closely associated with the nasal length, mandibular width, and width between the mental foramina. The rs10868138 site mutation in the SLC28A3 gene may be associated with the nasal length, alar width, width between tragus, and width between the mental foramina. The rs1048603 and rs838543 site mutations in the USP40 gene may be closely associated with the pyriform aperture width. Our findings provide useful genetic information for the determination of face morphology

    Effects of <i>PLIN1</i> Gene Knockout on the Proliferation, Apoptosis, Differentiation and Lipolysis of Chicken Preadipocytes

    No full text
    Perilipin 1 (PLIN1) is one of the most abundant lipid droplet-related proteins on the surface of adipocytes. Our previous results showed that PLIN1 plays an important role in chicken lipid metabolism. To further reveal the role of PLIN1 in the growth and development of adipocytes, a chicken preadipocyte line with a PLIN1 gene knockout was established by the CRISPR/Cas9 gene editing technique, and the effects of the PLIN1 gene on the proliferation, apoptosis, differentiation and lipolysis of chicken preadipocytes were detected. The results showed that the CRISPR/Cas9 system effectively mediated knockout of the PLIN1 gene. After the deletion of PLIN1, the differentiation ability and early apoptotic activity of chicken preadipocytes decreased, and their proliferation ability increased. Moreover, knockout of PLIN1 promoted chicken preadipocyte lipolysis under basal conditions and inhibited chicken preadipocyte lipolysis under hormone stimulation. Taken together, our results inferred that PLIN1 plays a regulatory role in the process of proliferation, apoptosis, differentiation and lipolysis of chicken preadipocytes

    Aggregation Behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an Air/Water Interface: Experimental Study and Molecular Dynamics Simulation

    No full text
    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ<sub>max</sub>) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface
    corecore