37 research outputs found

    Fast way to determine pp-collision time at the SPD experiment

    Full text link
    The main task of this work is to find a fast and robust way to determine pp-collision time t0 at the SPD experiment. Using physics motivations, from the input flux of reconstructed particles' tracks we identify a subset of pions which is used to calculate the unbiased estimation of the event collision time. The uncertainty of the estimation is about 30 ps. This method is fast (less than 300 ns per event) and reliable, thus it will allow to process the high flux of input events at the SPD experiment.Comment: Submitted to Physics of Elementary Particles and Atomic Nuclei, Letter

    Direct calculation of the probability of pionium ionization in the target

    Full text link
    We performed the first direct calculation of the probability of pionium (pi+pi- atom) ionization in the target. The dependence of the probability of pionium ionization in the target as a function of the pionium lifetime is established. These calculations are of interest of the DIRAC experiment at CERN, which aims to measure the pionium lifetime with high precision.Comment: 11 pages, 4 figures; submitted to "Physics of Atomic Nuclei" ("Yadernaya Fizika"

    Determination of ππ\pi\pi scattering lengths from measurement of π+π\pi^+\pi^- atom lifetime

    Get PDF
    The DIRAC experiment at CERN has achieved a sizeable production of π+π\pi^+\pi^- atoms and has significantly improved the precision on its lifetime determination. From a sample of 21227 atomic pairs, a 4% measurement of the S-wave ππ\pi\pi scattering length difference a0a2=(.0.25330.0078+0.0080stat.0.0073+0.0078syst)Mπ+1|a_0-a_2| = (.0.2533^{+0.0080}_{-0.0078}|_\mathrm{stat}.{}^{+0.0078}_{-0.0073}|_\mathrm{syst})M_{\pi^+}^{-1} has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure

    LHC Transverse Feedback System and its Hardware Commissioning

    Get PDF
    A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise coupled bunch instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The transverse damper can also be used as an exciter for purposes of abort gap cleaning or tune measurement. The power and lowlevel systems layouts are described along with results from the hardware commissioning. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control

    LHC Transverse Feedback System: First Results of Commissionning

    Get PDF
    A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise the high intensity beam against coupled bunch transverse instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The LHC Damper can also be used as means of exciting transverse oscillations for the purposes of abort gap cleaning and tune measurement. The LHC Damper includes 4 feedback systems on 2 circulating beams (in other words one feedback system per beam and plane). Every feedback system consists of 4 electrostatic kickers, 4 push-pull wide band power amplifiers, 8 preamplifiers, two digital processing units and 2 beam position monitors with low-level electronics. The power and low-level subsystem layout is described along with first results from the commissioning of 16 power amplifiers and 16 electrostatic kickers located in the LHC tunnel. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control. Requirements and first measurements of the performance of the power and low-level subsystems are summarized

    First πK\pi K atom lifetime and πK\pi K scattering length measurements

    Get PDF
    The results of a search for hydrogen-like atoms consisting of πK±\pi^{\mp}K^{\pm} mesons are presented. Evidence for πK\pi K atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK\pi K pairs from their breakup in the same target (178±49178 \pm 49) and from Coulomb final state interaction (653±42653 \pm 42). Using these results the analysis yields a first value for the πK\pi K atom lifetime of τ=(2.51.8+3.0)\tau=(2.5_{-1.8}^{+3.0}) fs and a first model-independent measurement of the S-wave isospin-odd πK\pi K scattering length a0=13a1/2a3/2=(0.110.04+0.09)Mπ1\left|a_0^-\right|=\frac{1}{3}\left|a_{1/2}-a_{3/2}\right|= \left(0.11_{-0.04}^{+0.09} \right)M_{\pi}^{-1} (aIa_I for isospin II).Comment: 14 pages, 8 figure

    Detection of π+π\pi^+\pi^-atoms with the DIRAC spectrometer at CERN

    Full text link
    The goal of the DIRAC experiment at CERN is to measure with high precision the lifetime of the π+π\pi^+\pi^- atom (A2πA_{2\pi}), which is of order 3×10153\times10^{-15} s, and thus to determine the s-wave ππ\pi\pi-scattering lengths difference a0a2|a_{0}-a_{2}|. A2πA_{2\pi} atoms are detected through the characteristic features of π+π\pi^+\pi^- pairs from the atom break-up (ionization) in the target. We report on a first high statistics atomic data sample obtained from p Ni interactions at 24 GeV/cc proton momentum and present the methods to separate the signal from the background.Comment: 19 pages, 12 figures, 1 tabl

    Evidence for πK\pi K-atoms with DIRAC

    Get PDF
    We present evidence for the first observation of electromagnetically bound π±K\pi^\pm K^\mp-pairs (πK\pi K-atoms) with the DIRAC experiment at the CERN-PS. The πK\pi K-atoms are produced by the 24 GeV/c proton beam in a thin Pt-target and the π±\pi^\pm and KK^\mp-mesons from the atom dissociation are analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173 ±\pm 54 πK\pi K-atoms. The mean life of πK\pi K-atoms is related to the s-wave πK\pi K-scattering lengths, the measurement of which is the goal of the experiment. From these first data we derive a lower limit for the mean life of 0.8 fs at 90% confidence level.Comment: 15 pages, 9 figure

    DIRAC: A High Resolution Spectrometer for Pionium Detection

    Full text link
    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting π+π\pi^+ \pi^- atoms produced by a 24 GeV/cc high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very low relative momentum, and the measurement of the latter with resolution around 0.6 MeV/cc. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and setup performances are also given.Comment: 49 pages, 37 figures. Figures 1, 2, 5 and 28 are removed because of size limitations imposed by hep-ex. They don't offer essential information. Latex class file 'elsart.cls' also provide
    corecore