3,139 research outputs found

    Fire responses and resistance of concrete-filled steel tubular frame structures

    Get PDF
    This paper presents the results of dynamic responses and fire resistance of concretefilled steel tubular (CFST) frame structures in fire conditions by using non-linear finite element method. Both strength and stability criteria are considered in the collapse analysis. The frame structures are constructed with circular CFST columns and steel beams of I-sections. In order to validate the finite element solutions, the numerical results are compared with those from a fire resistance test on CFST columns. The finite element model is then adopted to simulate the behaviour of frame structures in fire. The structural responses of the frames, including critical temperature and fire-resisting limit time, are obtained for the ISO-834 standard fire. Parametric studies are carried out to show their influence on the load capacity of the frame structures in fire. Suggestions and recommendations are presented for possible adoption in future construction and design of these structures

    Zero Field precession and hysteretic threshold currents in spin torque oscillators with tilted polarizer

    Full text link
    Using non-linear system theory and numerical simulations we map out the static and dynamic phase diagram in zero applied field of a spin torque oscillator with a tilted polarizer (TP-STO).We find that for sufficiently large currents, even very small tilt angles (beta>1 degree) will lead to steady free layer precession in zero field. Within a rather large range of tilt angles, 1 degree< beta <19 degree, we find coexisting static states and hysteretic switching between these using only current. In a more narrow window (1 degree<beta<5 degree) one of the static states turns into a limit cycle (precession). The coexistence of static and dynamic states in zero magnetic field is unique to the tilted polarizer and leads to large hysteresis in the upper and lower threshold currents for TP-STO operation.Comment: 5 pages, 4 figure

    Study of quasi-1D SnO2 nanowires

    Get PDF
    The descriptions of SnO2 nanowires growth procedures are getting more and more frequent in the current literature. However, studies on the growth mechanisms are still lacking. In particular, no investigation has been reported on the growth process when the growth mechanisms are not based, as in the case of whiskers, on vapour-liquid-solid (VLS) transitions. In this paper, a new procedure is reported by the authors for growing SnO2 nanowires, based on the presence of liquid-tin droplets on the substrate. The Sn vapour pressure developed by these droplets, which find themselves very close to the growing tip of the wire, gives rise to a sufficiently high supersaturation to enable the fast growth rate usually observed. The principal features and results of this new procedure, as well as possible growth mechanisms, are also discussed

    Trends in Elasticity and Electronic Structure of Transition-Metal Nitrides and Carbides from First Principles

    Full text link
    The elastic properties of the B1B_1-structured transition-metal nitrides and their carbide counterparts are studied using the {\it ab initio\} density functional perturbation theory. The linear response results of elastic constants are in excellent agreement with those obtained from numerical derivative methods, and are also consistent with measured data. We find the following trends: (1) Bulk moduli BB and tetragonal shear moduli G=(C11C12)/2G^{\prime}=(C_{11}-C_{12})/2, increase and lattice constants a0a_{0} decrease rightward or downward on the Periodic Table for the metal component or if C is replaced by N; (2) The inequality B>G>G>0B > G^{\prime} > G > 0 holds for G=C44G=C_{44}; (3) GG depends strongly on the number of valence electrons per unit cell (ZVZ_{V}). From the fitted curve of GG as a function of ZVZ_{V}, we can predict that MoN is unstable in B1B_{1} structure, and transition-metal carbonitrides (e.g.e.g. ZrCx_{x}N1x_{1-x}) and di-transition-metal carbides (e.g.e.g. Hfx_{x}Ta1x_{1-x}C) have maximum GG at ZV8.3Z_{V} \approx 8.3.Comment: 4 pages, 2 figures, submitted to PRL. 2 typos in ref. 15 were correcte

    KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    Get PDF
    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations

    SARS-CoV-2 structural features may explain limited neutralizing-antibody responses.

    Get PDF
    Neutralizing antibody responses of SARS-CoV-2-infected patients may be low and of short duration. We propose here that coronaviruses employ a structural strategy to avoid strong and enduring antibody responses. Other viruses induce optimal and long-lived neutralizing antibody responses, thanks to 20 or more repetitive, rigid antigenic epitopes, spaced by 5–10 nm, present on the viral surface. Such arrays of repetitive and highly organized structures are recognized by the immune system as pathogen-associated structural patterns (PASPs), which are characteristic for pathogen surfaces. In contrast, coronaviruses are large particles with long spikes (S protein) embedded in a fluid membrane. Therefore, the neutralizing epitopes (which are on the S protein) are loosely “floating” and widely spaced by an average of about 25 nm. Consequently, recruitment of complement is poor and stimulation of B cells remains suboptimal, offering an explanation for the inefficient and short-lived neutralizing antibody responses

    Coherent lepton pair production in hadronic heavy ion collisions

    Full text link
    Recently, significant enhancements of e+ee^{+} e^{-} pair production at very low transverse momentum (pT<0.15p_{T} < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and ρ\rho in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. In this article, we present calculations of lepton pair (e+ee^{+}e^{-} and μ+μ\mu^{+}\mu^{-}) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance
    corecore