37 research outputs found

    Coherent quantum phase slip

    Full text link
    A hundred years after discovery of superconductivity, one fundamental prediction of the theory, the coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect: whilst the latter is a coherent transfer of charges between superconducting contacts, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, the CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors in the vicinity of the superconductor-insulator transition (SIT). Here we report the first direct observation of the CQPS in a strongly disordered indium-oxide (InOx) superconducting wire inserted in a loop, which is manifested by the superposition of the quantum states with different number of fluxes. Similarly to the Josephson effect, our observation is expected to lead to novel applications in superconducting electronics and quantum metrology.Comment: 14 pages, 3 figure

    Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential

    Full text link
    It is well-known that in bulk, the solution of the Bogoliubov-de Gennes equations is the same whether or not the Hartree-Fock term is included. Here the Hartree-Fock potential is position independent and, so, gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. It is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position dependent Hartree-Fock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubov-de Gennes equations with the Hartree-Fock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters

    Metallicities and ages for 35 star clusters and their surrounding fields in the Small Magellanic Cloud

    Full text link
    In this work we study 35 stellar clusters in the Small Magellanic Cloud (SMC) in order to provide their mean metallicities and ages. We also provide mean metallicities of the fields surrounding the clusters. We used Str\"omgren photometry obtained with the 4.1 m SOAR telescope and take advantage of (by)(b - y) and m1m1 colors for which there is a metallicity calibration presented in the literature. The spatial metallicity and age distributions of clusters across the SMC are investigated using the results obtained by Str\"omgren photometry. We confirm earlier observations that younger, more metal-rich star clusters are concentrated in the central regions of the galaxy, while older, more metal-poor clusters are located farther from the SMC center. We construct the age-metallicity relation for the studied clusters and find good agreement with theoretical models of chemical enrichment, and with other literature age and metallicity values for those clusters. We also provide the mean metallicities for old and young populations of the field stars surrounding the clusters, and find the latter to be in good agreement with recent studies of the SMC Cepheid population. Finally, the Str\"omgren photometry obtained for this study is made publicly available.Comment: 22 pages, 12 figures, 6 tables, Accepted for publication in A&

    HARPS-N high spectral resolution observations of Cepheids II. The impact of the surface-brightness color relation on the Baade-Wesselink projection factor of eta Aql

    Full text link
    The Baade-Wesselink (BW) method of distance determination of Cepheids is used to calibrate the distance scale. Various versions of this method are mainly based on interferometry and/or the surface-brightness color relation (SBCR). We quantify the impact of the SBCR, its slope, and its zeropoint on the projection factor. This quantity is used to convert the pulsation velocity into the radial velocity in the BW method. We also study the impact of extinction and of a potential circumstellar environment on the projection factor. We analyzed HARPS-N spectra of eta Aql to derive its radial velocity curve using different methods. We then applied the inverse BW method using various SBCRs in the literature in order to derive the BW projection factor. We find that the choice of the SBCR is critical: a scatter of about 8% is found in the projection factor for different SBCRs in the literature. The uncertainty on the coefficients of the SBCR affects the statistical precision of the projection factor only little (1-2\%). Confirming previous studies, we find that the method with which the radial velocity curve is derived is also critical, with a potential difference on the projection factor of 9%. An increase of 0.1 in E(B-V) translates into a decrease in the projection factor of 3%. A 0.1 magnitude effect of a circumstellar envelope (CSE) in the visible domain is rather small on the projection factor, about 1.5%. However, we find that a 0.1 mag infrared excess in the K band due to a CSE can increase the projection factor by about 6%. The impact of the surface-brightness color relation on the BW projection factor is found to be critical. Efforts should be devoted in the future to improve the SBCR of Cepheids empirically, but also theoretically, taking their CSE into account as well.Comment: Accepted for publication in Astronomy & Astrophysic

    The Araucaria Project: Improving the cosmic distance scale

    Full text link
    The book consists of a number of short articles that present achievements of the Araucaria members, collaborators, and friends, in various aspects of distance determinations and related topics. It celebrates the 20-year anniversary of the Araucaria Project, acknowledges the people who worked for its success, and popularises our methods and results among broader readership. This book is a part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 695099.Comment: 114 pages, book published in 2021 on behalf of the Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, to celebrate 20 years of the Arauria Projec

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer
    corecore