3 research outputs found

    Molecular mechanisms of methionine dependance in cancer stem cells

    No full text
    Certaines cellules cancĂ©reuses sont mĂ©thionine dĂ©pendantes cependant les mĂ©canismes de cette mĂ©thionine dĂ©pendance sont inconnus. Les cellules initiatrices de tumeur, qui reprĂ©sentent un faible pourcentage des cellules d’une tumeur, sont impliquĂ©es dans la rĂ©cidive du cancer, phĂ©nocopient les cellules souches cancĂ©reuses et forment des sphĂ©roĂŻdes 3D ou «tumor spheres (TS)» dans des conditions de culture non adhĂ©rentes. Nous montrons que, contrairement aux cellules monocouches adhĂ©rentes U251, les TS dĂ©rivĂ©es de cellules de glioblastome U251 ont besoin de mĂ©thionine exogĂšne pour se dĂ©velopper. Cette mĂ©thionine-dĂ©pendance est caractĂ©risĂ©e par une courbe en forme de cloche dans laquelle la croissance des TS est ralentie par des concentrations Ă©levĂ©es de mĂ©thionine (> 0,01mM). Pendant la restriction en mĂ©thionine, le 5-mĂ©thyle-tĂ©trahydrofolate restaure la formation des TS. Si les TS sont privĂ©es de mĂ©thionine pendant 24h, puis supplĂ©mentĂ©es en acide folique, elles prĂ©sentent des concentrations d'isoformes des folates significativement infĂ©rieures Ă  celles retrouvĂ©es dans les cellules adhĂ©rentes maintenues dans les mĂȘmes conditions. Ceci suggĂšre que le cycle des folates est rĂ©primĂ© dans les TS comparativement aux cellules adhĂ©rentes. L'annotation fonctionnelle des donnĂ©es ARN-Seq montre des changements nets dans plusieurs fonctions molĂ©culaires et dĂ©voile dans les TS un cycle cellulaire rĂ©duit, une augmentation du caractĂšre « stemness » et une diminution du mĂ©tabolisme des folates affectant particuliĂšrement DHFR, SHMT et MTFHD. L'analyse du mĂ©thylome rĂ©vĂšle des changements de mĂ©thylation dans le cycle cellulaire, la signature « stemness » et le cycle des folates, malgrĂ© des profils globaux de mĂ©thylation de l'ADN qui restent stables. Cependant, contrairement Ă  la mĂ©thylation importante des promoteurs observĂ©e pour le cycle cellulaire et les gĂšnes « stemness » (+ 25%), seuls 10 gĂšnes du cycle des folates sur 139 gĂšnes impliquĂ©s dans le mĂ©tabolisme des mono-carbones sont significativement modifiĂ©s. En conclusion, un cycle des folates avec activitĂ© rĂ©duite fait partie de la reprogrammation mĂ©tabolique qui dĂ©clenche la dĂ©diffĂ©renciation en cellules souches cancĂ©reuses et cette rĂ©pression ne s'explique qu’en partie par la modification de mĂ©thylation des promoteursSome cancer cells are methionine dependent however little is known about the mechanisms of this dependency. Tumor initiating cells are a rare population of cancer cells, implicated in disease recurrence, that phenocopy cancer stem cells and form 3D spheroids or ‘tumor spheres (TS)» under non adherent conditions. We show that, unlike U251 adherent monolayer cells, TS derived from U251 glioblastoma cells need exogenous methionine to grow. This methionine dependency is characterized by a bell shape curve in which high methionine concentrations (>0.01mM) slow down TS growth. During methionine restriction, 5- methyltetrahydrofolate restores TS formation. When TS are deprived from methionine for 24h, then supplemented with folic acid, they exhibit lower levels of folate isoforms than adherent cells maintained in the same conditions, suggesting that folate cycle is repressed in TS relative to adherent cells. Functional annotation of the RNA-seq data shows clear changes in several molecular functions and reveals in TS a reduced cell cycle, an increased stemness and a diminished folate metabolism affecting particularly DHFR, SHMT and MTFHD. Methylome analysis shows methylation changes in cell cycle, stemness and folate cycle, despite global DNA methylation patterns remaining stable. However, unlike the important promoter methylation observed for cell cycle and stemness genes (+25%), only 10 folate cycle genes out of 139 genes involved in one-carbon metabolism are significantly altered. In conclusion, reduced folate cycle is part of the metabolic reprogramming triggering dedifferenciation into cancer stem cells and this repression is only partly explained by the alteration of promoter methylatio

    Les mécanismes moléculaires de la méthionine dépendance des cellules souches cancéreuses

    No full text
    Some cancer cells are methionine dependent however little is known about the mechanisms of this dependency. Tumor initiating cells are a rare population of cancer cells, implicated in disease recurrence, that phenocopy cancer stem cells and form 3D spheroids or ‘tumor spheres (TS)» under non adherent conditions. We show that, unlike U251 adherent monolayer cells, TS derived from U251 glioblastoma cells need exogenous methionine to grow. This methionine dependency is characterized by a bell shape curve in which high methionine concentrations (>0.01mM) slow down TS growth. During methionine restriction, 5- methyltetrahydrofolate restores TS formation. When TS are deprived from methionine for 24h, then supplemented with folic acid, they exhibit lower levels of folate isoforms than adherent cells maintained in the same conditions, suggesting that folate cycle is repressed in TS relative to adherent cells. Functional annotation of the RNA-seq data shows clear changes in several molecular functions and reveals in TS a reduced cell cycle, an increased stemness and a diminished folate metabolism affecting particularly DHFR, SHMT and MTFHD. Methylome analysis shows methylation changes in cell cycle, stemness and folate cycle, despite global DNA methylation patterns remaining stable. However, unlike the important promoter methylation observed for cell cycle and stemness genes (+25%), only 10 folate cycle genes out of 139 genes involved in one-carbon metabolism are significantly altered. In conclusion, reduced folate cycle is part of the metabolic reprogramming triggering dedifferenciation into cancer stem cells and this repression is only partly explained by the alteration of promoter methylationCertaines cellules cancĂ©reuses sont mĂ©thionine dĂ©pendantes cependant les mĂ©canismes de cette mĂ©thionine dĂ©pendance sont inconnus. Les cellules initiatrices de tumeur, qui reprĂ©sentent un faible pourcentage des cellules d’une tumeur, sont impliquĂ©es dans la rĂ©cidive du cancer, phĂ©nocopient les cellules souches cancĂ©reuses et forment des sphĂ©roĂŻdes 3D ou «tumor spheres (TS)» dans des conditions de culture non adhĂ©rentes. Nous montrons que, contrairement aux cellules monocouches adhĂ©rentes U251, les TS dĂ©rivĂ©es de cellules de glioblastome U251 ont besoin de mĂ©thionine exogĂšne pour se dĂ©velopper. Cette mĂ©thionine-dĂ©pendance est caractĂ©risĂ©e par une courbe en forme de cloche dans laquelle la croissance des TS est ralentie par des concentrations Ă©levĂ©es de mĂ©thionine (> 0,01mM). Pendant la restriction en mĂ©thionine, le 5-mĂ©thyle-tĂ©trahydrofolate restaure la formation des TS. Si les TS sont privĂ©es de mĂ©thionine pendant 24h, puis supplĂ©mentĂ©es en acide folique, elles prĂ©sentent des concentrations d'isoformes des folates significativement infĂ©rieures Ă  celles retrouvĂ©es dans les cellules adhĂ©rentes maintenues dans les mĂȘmes conditions. Ceci suggĂšre que le cycle des folates est rĂ©primĂ© dans les TS comparativement aux cellules adhĂ©rentes. L'annotation fonctionnelle des donnĂ©es ARN-Seq montre des changements nets dans plusieurs fonctions molĂ©culaires et dĂ©voile dans les TS un cycle cellulaire rĂ©duit, une augmentation du caractĂšre « stemness » et une diminution du mĂ©tabolisme des folates affectant particuliĂšrement DHFR, SHMT et MTFHD. L'analyse du mĂ©thylome rĂ©vĂšle des changements de mĂ©thylation dans le cycle cellulaire, la signature « stemness » et le cycle des folates, malgrĂ© des profils globaux de mĂ©thylation de l'ADN qui restent stables. Cependant, contrairement Ă  la mĂ©thylation importante des promoteurs observĂ©e pour le cycle cellulaire et les gĂšnes « stemness » (+ 25%), seuls 10 gĂšnes du cycle des folates sur 139 gĂšnes impliquĂ©s dans le mĂ©tabolisme des mono-carbones sont significativement modifiĂ©s. En conclusion, un cycle des folates avec activitĂ© rĂ©duite fait partie de la reprogrammation mĂ©tabolique qui dĂ©clenche la dĂ©diffĂ©renciation en cellules souches cancĂ©reuses et cette rĂ©pression ne s'explique qu’en partie par la modification de mĂ©thylation des promoteur

    Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency

    No full text
    International audienceMethionine dependency of tumor growth, although not well-understood, is detectable by 11C-methionine positron emission tomography and may contribute to the aggressivity of glioblastomas (GBM) and meningiomas. Cytosolic folate cycle is required for methionine synthesis. Its dysregulation may influence cell reprogramming towards pluripotency. We evaluated methionine-dependent growth of monolayer (ML) cells and stem cell-like tumor spheres (TS) derived from 4 GBM (U251, U87, LN299, T98G) and 1 meningioma (IOMM-LEE) cell lines. Our data showed that for all cell lines studied, exogenous methionine is required for TS formation but not for ML cells proliferation. Furthermore, for GBM cell lines, regardless of the addition of folate cycle substrates (folic acid and formate), the level of 3 folate isoforms, 5-methytetrahydrofolate, 5,10-methenyltetrahydrofolate, and 10-formyltetrahydrofolate, were all downregulated in TS relative to ML cells. Unlike GBM cell lines, in IOMM-LEE cells, 5-methyltetrahydrofolate was actually more elevated in TS than ML, and only 5,10-methenyltetrahydrofolate and 10-formyltetrahydrofolate were downregulated. The functional significance of this variation in folate cycle repression was revealed by the finding that Folic Acid and 5-methyltetrahydrofolate promote the growth of U251 TS but not IOMM-LEE TS. Transcriptome-wide sequencing of U251 cells revealed that DHFR, SHMT1, and MTHFD1 were downregulated in TS vs ML, in concordance with the low activity cytosolic folate cycle observed in U251 TS. In conclusion, we found that a repressed cytosolic folate cycle underlies the methionine dependency of GBM and meningioma cell lines and that 5-methyltetrahydrofolate is a key metabolic switch for glioblastoma TS formation. The finding that folic acid facilitates TS formation, although requiring further validation in diseased human tissues, incites to investigate whether excessive folate intake could promote cancer stem cells formation in GBM patients
    corecore