256 research outputs found

    Electric monopole transitions from low energy excitations in nuclei

    Get PDF
    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, ρ2\rho^2(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between ρ2\rho^2(E0) and isotopic shifts

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    Natural climate solutions

    Get PDF
    Our thanks for inputs by L. Almond, A. Baccini, A. Bowman, S. CookPatton, J. Evans, K. Holl, R. Lalasz, A. Nassikas, M. Spalding, M. Wolosin, and expert elicitation respondents. Our thanks for datasets developed by the Hansen lab and the NESCent grasslands working group (C. Lehmann, D. Griffith, T. M. Anderson, D. J. Beerling, W. Bond, E. Denton, E. Edwards, E. Forrestel, D. Fox, W. Hoffmann, R. Hyde, T. Kluyver, L. Mucina, B. Passey, S. Pau, J. Ratnam, N. Salamin, B. Santini, K. Simpson, M. Smith, B. Spriggs, C. Still, C. Strömberg, and C. P. Osborne). This study was made possible by funding from the Doris Duke Charitable Foundation. Woodbury was supported in part by USDA-NIFA Project 2011-67003-30205 Data deposition: A global spatial dataset of reforestation opportunities has been deposited on Zenodo (https://zenodo.org/record/883444). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710465114/-/DCSupplemental.Peer reviewedPublisher PD

    Drivers of global mangrove loss and gain in social-ecological systems

    Get PDF
    Mangrove forests store high amounts of carbon, protect communities from storms, and support fisheries. Mangroves exist in complex social-ecological systems, hence identifying socioeconomic conditions associated with decreasing losses and increasing gains remains challenging albeit important. The impact of national governance and conservation policies on mangrove conservation at the landscape-scale has not been assessed to date, nor have the interactions with local economic pressures and biophysical drivers. Here, we assess the relationship between socioeconomic and biophysical variables and mangrove change across coastal geomorphic units worldwide from 1996 to 2016. Globally, we find that drivers of loss can also be drivers of gain, and that drivers have changed over 20 years. The association with economic growth appears to have reversed, shifting from negatively impacting mangroves in the first decade to enabling mangrove expansion in the second decade. Importantly, we find that community forestry is promoting mangrove expansion, whereas conversion to agriculture and aquaculture, often occurring in protected areas, results in high loss. Sustainable development, community forestry, and co-management of protected areas are promising strategies to reverse mangrove losses, increasing the capacity of mangroves to support human-livelihoods and combat climate change

    High-precision branching-ratio measurement for the superallowed β\u3csup\u3e+\u3c/sup\u3e emitter 74Rb

    Get PDF
    A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B 0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft̄ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region. © 2013 American Physical Society
    corecore