622 research outputs found

    Gill Function in an Elasmobranch

    Get PDF
    Highly efficient oxygen uptake in elasmobranchs, as indicated by frequent excess of PaO2 over PEO2 has previously been ascribed to the operation of multicapillary rather than counter-current gas exchange by the gills. Analysis of models shows that, at maximum efficiency, a multicapillary system cannot account for values of PaO2 greater than (PIO2+PEO2)/2. In Port Jackson sharks Heterodontus portusjacksoni) PaO2 commonly exceeds (PIO2+PEO2)/2, which indicates the operation of a functional counter-current at the respiratory surface. The anatomical basis of this counter-current is provided by the demonstration that a continuous flow of water passes between the secondary lamellae into septal canals and thence via the parabranchial cavities to the exterior

    What do aquaporin knockout studies tell us about fluid transport in epithelia?

    Get PDF
    The investigation of near-isosmotic water transport in epithelia goes back over 100 years; however, debates over mechanism and pathway remain. Aquaporin (AQP) knockouts have been used by various research groups to test the hypothesis of an osmotic mechanism as well as to explore the paracellular versus transcellular pathway debate. Nonproportional reductions in the water permeability of a water-transporting epithelial cell (e.g., a reduction of around 80–90 %) compared to the reduction in overall water transport rate in the knockout animal (e.g., a reduction of 50–60 %) are commonly found. This nonproportionality has led to controversy over whether AQP knockout studies support or contradict the osmotic mechanism. Arguments raised for and against an interpretation supporting the osmotic mechanism typically have partially specified, implicit, or incorrect assumptions. We present a simple mathematical model of the osmotic mechanism with clear assumptions and, for models based on this mechanism, establish a baseline prediction of AQP knockout studies. We allow for deviations from isotonic/isosmotic conditions and utilize dimensional analysis to reduce the number of parameters that must be considered independently. This enables a single prediction curve to be used for multiple epithelial systems. We find that a simple, transcellular-only osmotic mechanism sufficiently predicts the results of knockout studies and find criticisms of this mechanism to be overstated. We note, however, that AQP knockout studies do not give sufficient information to definitively rule out an additional paracellular pathway

    Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity

    Get PDF
    Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited

    Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2

    Get PDF
    The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis

    Sodium ion interactions with aqueous glucose: Insights from quantum mechanics, molecular dynamics, and experiment

    Get PDF
    In the last several decades, significant efforts have been conducted to understand the fundamental reactivity of glucose derived from plant biomass in various chemical environments for conversion to renewable fuels and chemicals. For reactions of glucose in water, it is known that inorganic salts naturally present in biomass alter the product distribution in various deconstruction processes. However, the molecular-level interactions of alkali metal ions and glucose are unknown. These interactions are of physiological interest as well, for example, as they relate to cation-glucose cotransport. Here, we employ quantum mechanics (QM) to understand the interaction of a prevalent alkali metal, sodium, with glucose from a structural and thermodynamic perspective. The effect on B-glucose is subtle: a sodium ion perturbs bond lengths and atomic partial charges less than rotating a hydroxymethyl group. In contrast, the presence of a sodium ion significantly perturbs the partial charges of α-glucose anomeric and ring oxygens. Molecular dynamics (MD) simulations provide dynamic sampling in explicit water, and both the QM and the MD results show that sodium ions associate at many positions with respect to glucose with reasonably equivalent propensity. This promiscuous binding nature of Na + suggests that computational studies of glucose reactions in the presence of inorganic salts need to ensure thorough sampling of the cation positions, in addition to sampling glucose rotamers. The effect of NaCl on the relative populations of the anomers is experimentally quantified with light polarimetry. These results support the computational findings that Na + interacts similarly with a- and B-glucose

    Aquaporins: important but elusive drug targets.

    Get PDF
    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators
    corecore