6,641 research outputs found

    Anti-phospholipid-antibodies in patients with relapsing polychondritis

    Get PDF
    Relapsing polychondritis (RP) is an extremly rare multisystemic disease thought to be of autoimmune origin. In order to assess if RP is associated with anti-phospholipid antibodies (aPL), clinical data and sera of 21 patients with RP were collected in a multicentre study. Concentration of anti-cardiolipin antibodies (aCL) (IgG-, IgM-and IgA-isotypes), anti-phosphatidylserine-antibodies (aPS) (IgG-and IgM-isotypes) and anti-β-2-glycoprotein I-antibodies (aβ2 GPI) were measured by ELISA. In eight patients aCL were found to be elevated. One patient had elevated aPS. No patient had elevated aβ2 GPI. No patient had clinical signs and symptoms of a aPL syndrome. Interestingly, the two RP patients with the highest aPL had concomitant systemic lupus erythematosus (SLE). Therefore the presence of elevated aPL in RP is probably more closely related to an associated SLE than to RP itself. There is no convincing evidence that aPL are associated with RP

    Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure

    Get PDF
    The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5

    Non-perturbative electron dynamics in crossed fields

    Full text link
    Intense AC electric fields on semiconductor structures have been studied in photon-assisted tunneling experiments with magnetic field applied either parallel (B_par) or perpendicular (B_per) to the interfaces. We examine here the electron dynamics in a double quantum well when intense AC electric fields F, and tilted magnetic fields are applied simultaneously. The problem is treated non-perturbatively by a time-dependent Hamiltonian in the effective mass approximation, and using a Floquet-Fourier formalism. For B_par=0, the quasi-energy spectra show two types of crossings: those related to different Landau levels, and those associated to dynamic localization (DL), where the electron is confined to one of the wells, despite the non-negligible tunneling between wells. B_par couples parallel and in-plane motions producing anti-crossings in the spectrum. However, since our approach is non-perturbative, we are able to explore the entire frequency range. For high frequencies, we reproduce the well known results of perfect DL given by zeroes of a Bessel function. We find also that the system exhibits DL at the same values of the field F, even as B_par non-zero, suggesting a hidden dynamical symmetry in the system which we identify with different parity operations. The return times for the electron at various values of field exhibit interesting and complex behavior which is also studied in detail. We find that smaller frequencies shifts the DL points to lower field F, and more importantly, yields poorer localization by the field. We analyze the explicit time evolution of the system, monitoring the elapsed time to return to a given well for each Landau level, and find non-monotonic behavior for decreasing frequencies.Comment: REVTEX4 + 11 eps figs, submitted to Phys. Rev.

    Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory

    Full text link
    Part of the field dependent dissipation in ferrofluids occurs due to the rotational motion of the ferromagnetic grains relative to the viscous flow of the carrier fluid. The classical theoretical description due to Shliomis uses a mesoscopic treatment of the particle motion to derive a relaxation equation for the non-equilibrium part of the magnetization. Complementary, the hydrodynamic approach of Liu involves only macroscopic quantities and results in dissipative Maxwell equations for the magnetic fields in the ferrofluid. Different stress tensors and constitutive equations lead to deviating theoretical predictions in those situations, where the magnetic relaxation processes cannot be considered instantaneous on the hydrodynamic time scale. We quantify these differences for two situations of experimental relevance namely a resting fluid in an oscillating oblique field and the damping of parametrically excited surface waves. The possibilities of an experimental differentiation between the two theoretical approaches is discussed.Comment: 14 pages, 2 figures, to appear in PR

    Experimental realization of a topological Anderson insulator

    Get PDF
    We experimentally demonstrate that disorder can induce a topologically non-trivial phase. We implement this “Topological Anderson Insulator” in arrays of evanescently coupled waveguides and demonstrate its unique features

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
    corecore