36 research outputs found

    Traversed Graph Representation for Sparse Encoding of Macro-Reentrant Tachycardia

    No full text
    © Springer International Publishing Switzerland 2016.Macro-reentrant atrial and ventricular tachycardias originate from additional circuits in which the activation of the cardiac chambers follows a high-frequency rotating pattern. The macro-reentrant circuit can be interrupted by targeted radiofrequency energy delivery with a linear lesion transecting the pathway. The choice of the optimal ablation site is determined by the operator’s experience, thus limiting the procedure success, increasing its duration and also unnecessarily extending the ablated tissue area in the case of incorrect ablation target estimation. In this paper, an algorithm for automatic intraoperative detection of the tachycardia reentry path is proposed by modelling the propagation as a graph traverse problem. Moreover, the optimal ablation point where the path should be transected is computed. Finally, the proposed method is applied to sparse electroanatomical data to demonstrate its use when undersampled mapping occurs. Thirteen electroanatomical maps of right ventricle and right and left atrium tachycardias from patients treated for congenital heart disease were analysed retrospectively in this study, with prediction accuracy tested against the recorded ablation sites and arrhythmia termination points

    Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.

    Get PDF

    MRI-based heart and torso personalization for computer modeling and simulation of cardiac electrophysiology

    No full text
    In the last decade, electrophysiological models for in-silico simulations of cardiac electrophysiology have gained much attention in the research field. However, to translate them to clinical uses, the models need personalization based on recordings from the patient. In this work, we explore methodologies for the patient-specific personalization of torso and heart geometric models based on standard clinical cardiac magnetic resonance acquisitions to enable simulations. The inclusion of the torso and its internal structures allows simulations of the human ventricular electrophysiological activity from the ionic level to the body surface potentials and to the electrocardiogram
    corecore