1,774 research outputs found

    CSF evidence of pericyte damage in Alzheimer's disease is associated with markers of blood-brain barrier dysfunction and disease pathology

    Get PDF
    BACKGROUND: We aimed to assess the relationship between levels of a cerebrospinal fluid (CSF) marker of pericyte damage, soluble platelet-derived growth factor receptor β (sPDGFRβ) and CSF markers of blood-brain barrier (BBB) integrity (CSF albumin and CSF/serum albumin ratio) and disease pathology (reduced CSF Aβ42 and elevated CSF total and phosphorylated tau) in Alzheimer’s disease (AD). METHODS: sPDGFRβ and albumin were measured by sandwich ELISA in ante-mortem CSF from 39 AD and 39 age-matched controls that were grouped according to their biomarker profile (i.e. AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL). sPDGFRβ was also measured in matched serum and CSF samples (n = 23) in a separate neurologically normal group for which the CSF/serum albumin ratio had been determined. RESULTS: CSF sPDGFRβ level was significantly increased in AD (p = 0.0038) and correlated positively with albumin (r = 0.45, p = 0.007), total tau (r = 0.50, p = 0.0017) and phosphorylated tau (r = 0.41, p = 0.013) in AD but not in controls. CSF sPDGFRβ did not correlate with Aβ42. Serum and CSF sPDGFRβ were positively correlated (r = 0.547, p = 0.0085) in the independent neurologically normal CSF/serum matched samples. CONCLUSIONS: We provide further evidence of an association between pericyte injury and BBB breakdown in AD and novel evidence that a CSF marker of pericyte injury is related to the severity of AD pathology

    Thrombin generation in two families with MYH9-related platelet disorder.

    Get PDF
    MYH9-related platelet disorders are inherited macrothrombocytopenias with additional clinical manifestations including renal failure, hearing loss, pre-senile cataract, and inclusion bodies in leucocytes that are present in different combinations. The MYH9 gene codes for the cytoplasmic contractile protein non-muscular myosin heavy chain IIA, present in several tissues. The bleeding tendency is usually mild to moderate but rarely, thrombotic complications are also seen. We report on the thrombin generation potential (ETP) in patients with MYH9-related disease with and without arterial thrombosis. In family A, four affected members [c.5521G>A mutation causing p.(Glu1841Lys)] were evaluated. Three of them had a moderate bleeding tendency and in two renal insufficiency and hearing loss were already present. These two patients had an arterial thrombosis (myocardial infarction and pons infarction, respectively) before 50 years of age. In family B, two members were affected [c.4679T>G, resulting in p.(Val1560Gly)]. Their bleeding tendency was mild (bleeding scores 4 and 3, respectively). Thrombelastography (ROTEM) was normal in all six individuals. ETP was below the normal range in family B. However, in family A, the two members affected by thrombosis had a normal ETP, indicating that other factors compensated for the low platelet count and might have contributed to the arterial thrombosis

    Obinutuzumab-Induced B Cell Depletion Reduces Spinal Cord Pathology in a CD20 Double Transgenic Mouse Model of Multiple Sclerosis

    Get PDF
    B cell-depleting therapies have recently proven to be clinically highly successful in the treatment of multiple sclerosis (MS). This study aimed to determine the effects of the novel type II anti-human CD20 (huCD20) monoclonal antibody (mAb) obinutuzumab (OBZ) on spinal cord degeneration in a B cell-dependent mouse model of MS. Double transgenic huCD20xHIGR3 (CD20dbtg) mice, which express human CD20, were immunised with the myelin fusion protein MP4 to induce experimental autoimmune encephalomyelitis (EAE). Both light and electron microscopy were used to assess myelination and axonal pathology in mice treated with OBZ during chronic EAE. Furthermore, the effects of the already established murine anti-CD20 antibody 18B12 were assessed in C57BL/6 wild-type (wt) mice. In both models (18B12/wt and OBZ/CD20dbtg) anti-CD20 treatment significantly diminished the extent of spinal cord pathology. While 18B12 treatment mainly reduced the extent of axonal pathology, a significant decrease in demyelination and increase in remyelination were additionally observed in OBZ-treated mice. Hence, the data suggest that OBZ could have neuroprotective effects on the CNS, setting the drug apart from the currently available type I anti-CD20 antibodies

    Cerebrospinal Fluid YKL-40 and Neurogranin in Familial Alzheimer's Disease: A Pilot Study

    Get PDF
    BACKGROUND: YKL-40 and neurogranin are promising additional cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) which reflect different underlying disease mechanisms. OBJECTIVE: To compare the levels of CSF YKL-40 and neurogranin between asymptomatic carriers of familial AD (FAD) mutations (MC) and non-carriers (NC) from the same families. Another objective was to assess changes in YKL-40 and neurogranin, from the presymptomatic to clinical phase of FAD. METHODS: YKL-40 and neurogranin, as well as Aβ42, total tau-protein, and phospho-tau, were measured in the CSF of 14 individuals carrying one of three FAD mutations, APPswe (p.KM670/671NL), APParc (p.E693G), and PSEN1 (p.H163Y), as well as in 17 NC from the same families. Five of the MC developed mild cognitive impairment (MCI) during follow-up. RESULTS: In this pilot study, there was no difference in either CSF YKL-40 or neurogranin when comparing the presymptomatic MC to the NC. YKL-40 correlated positively with expected years to symptom onset and to age in both the MC and the NC, while neurogranin had no correlation to either variable in either of the groups. A subgroup of the participants underwent more than one CSF sampling in which half of the MC developed MCI during follow-up. The longitudinal data showed an increase in YKL-40 levels in the MC as the expected symptom onset approached. Neurogranin remained stable over time in both the MC and the NC. CONCLUSION: These findings support a positive correlation between progression from presymptomatic to symptomatic AD and levels of CSF YKL-40, but not neurogranin

    EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes

    Get PDF
    Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges

    Mass spectrometry analysis of tau and amyloid-beta in iPSC-derived models of Alzheimer's disease and dementia

    Get PDF
    Induced pluripotent stem cell (iPSC) technology enables the generation of human neurons in vitro, which contain the precise genome of the cell donor, therefore permitting the generation of disease models from individuals with a disease-associated genotype of interest. This approach has been extensively used to model inherited forms of Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived neuronal models with targeted mass spectrometry analysis has provided unprecedented insights into the regulation of specific proteins in human neuronal physiology and pathology. For example enabling investigations into tau and APP/Aβ, specifically: protein isoform expression, relative levels of cleavage fragments, aggregated species and functionally critical post-translational modifications. The use of mass spectrometry has enabled a determination of how closely iPSC-derived models recapitulate disease profiles observed in the human brain. This review will highlight the progress to date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and dementia. We go on to convey our optimism, as studies in the near future will make use of this precedent, together with novel techniques such as genome editing and stable isotope labelling, to provide real progress towards an in depth understanding of early neurodegenerative processes and development of novel therapeutic agents

    Cerebrospinal fluid changes in the renin-angiotensin system in Alzheimer's disease

    Get PDF
    Observations in autopsied brain tissue indicate that overactivation of the classical renin-angiotensin system (cRAS) and underactivity within regulatory RAS pathways (rRAS) are associated with pathology in Alzheimer’s disease (AD). The primary aim of this study was to investigate whether cerebrospinal fluid (CSF) markers of RAS are altered in AD in relation to established CSF markers of disease pathology (lower Aβ42 and elevated tau) and CSF markers of capillary dysfunction. We studied 40 controls and 40 AD cases grouped according to a biomarker profile (i.e., AD cases t-tau>400 pg/mL, pTau >60 pg/mL, and Aβ42 <550 pg/mL). Angiotensin-II converting enyme-1 (ACE1) and ACE2 enzyme activity was measured using fluorogenic peptide substrates; sPDGFRβ and albumin level by sandwich ELISA; and angiotensin-I (Ang-I), Ang-II, and Ang-(1-7) by direct ELISA. CSF Aβ42, total, and phosphorylated tau levels were previously measured by INNOTEST sandwich ELISA. CSF ACE1 activity was significantly elevated in AD (p = 0.008) and positively correlated with ACE2 in AD (r = 0.420, p = 0.007). CSF ACE1 weakly correlated with t-tau (r = 0.294, p = 0.066) and p-tau (r = 0.329, p = 0.038) but not with Aβ42 in the controls but not in AD. ACE1 correlated positively with sPDGFRβ (r = 0.426, p = 0.007), a marker of pericyte injury, and ACE2 correlated positively with albumin (r = 0.422, p = 0.008), a marker of blood-brain barrier integrity. CSF Ang-I, Ang-II, and Ang-(1-7) levels were unchanged in AD. This cross-sectional CSF study indicates RAS dysfunction in relation to capillary damage in

    Neurofilament light chain in the vitreous humor of the eye

    Get PDF
    Background: Neurofilament light chain (NfL) is a promising biomarker of neurodegeneration in the cerebrospinal fluid and blood. This study investigated the presence of NfL in the vitreous humor and its associations with amyloid beta, tau, inflammatory cytokines and vascular proteins, apolipoprotein E (APOE) genotypes, Mini-Mental State Examination (MMSE) scores, systemic disease, and ophthalmic diseases. / Methods: This is a single-site, prospective, cross-sectional cohort study. Undiluted vitreous fluid (0.5–1.0 mL) was aspirated during vitrectomy, and whole blood was drawn for APOE genotyping. NfL, amyloid beta (Aβ), total Tau (t-Tau), phosphorylated Tau (p-Tau181), inflammatory cytokines, chemokines, and vascular proteins in the vitreous were quantitatively measured by immunoassay. The main outcome measures were the detection of NfL levels in the vitreous humor and its associations with the aforementioned proteins. Linear regression was used to test the associations of NfL with other proteins, APOE genotypes, MMSE scores, and ophthalmic and systemic diseases after adjustment for age, sex, education level, and other eye diseases. / Results: NfL was detected in all 77 vitreous samples. NfL was not found to be associated with ophthalmic conditions, APOE genotypes, MMSE scores, or systemic disease (p > 0.05). NfL levels were positively associated with increased vitreous levels of Aβ40 (p = 7.7 × 10−5), Aβ42 (p = 2.8 × 10−4), and t-tau (p = 5.5 × 10−7), but not with p-tau181 (p = 0.53). NfL also had significant associations with inflammatory cytokines such as interleukin-15 (IL-15, p = 5.3 × 10−4), IL-16 (p = 2.2 × 10−4), monocyte chemoattractant protein-1 (MCP1, p = 4.1 × 10−4), and vascular proteins such as vascular endothelial growth factor receptor-1 (VEGFR1, p = 2.9 × 10−6), Vegf-C (p = 8.6 × 10−6), vascular cell adhesion molecule-1 (VCAM-1, p = 5.0 × 10−4), Tie-2 (p = 6.3 × 10−4), and intracellular adhesion molecular-1 (ICAM-1, p = 1.6 × 10−4). / Conclusion: NfL is detectable in the vitreous humor of the eye and significantly associated with amyloid beta, t-tau, and select inflammatory and vascular proteins in the vitreous. Additionally, NfL was not associated with patients’ clinical eye condition. Our results serve as a foundation for further investigation of NfL in the ocular fluids to inform us about the potential utility of its presence in the eye

    Chemical Imaging of Evolving Amyloid Plaque Pathology and Associated Aβ Peptide Aggregation in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    One of the major hallmarks of Alzheimer's disease (AD) pathology is the formation of extracellular amyloid β (Aβ) plaques. While Aβ has been suggested to be critical in inducing and, potentially, driving the disease, the molecular basis of AD pathogenesis is still under debate. Extracellular Aβ plaque pathology manifests itself upon aggregation of distinct Aβ peptides, resulting in morphologically different plaque morphotypes, including mainly diffuse and cored senile plaques. As plaque pathology precipitates long before any clinical symptoms occur, targeting the Aβ aggregation processes provides a promising target for early interventions. However, the chain of events of when, where and what Aβ species aggregate and form plaques remains unclear. The aim of the current study was to investigate the potential of MALDI-IMS as a tool to study the evolving pathology in transgenic mouse models for AD. To that end, we used an emerging, chemical imaging modality - MALDI imaging mass spectrometry - that allows for delineating Aβ aggregation with specificity at the single plaque level. We identified that plaque formation occurs first in cortical regions and that these younger plaques contain higher levels of 42 amino acid-long Aβ (Aβ1-42). Plaque maturation was found to be characterized by a relative increase in deposition of Aβ1-40, which was associated with the appearance of a cored morphology of the plaques. Finally, other C-terminally truncated Aβ species (Aβ1-38 and Aβ1-39) exhibited a similar aggregation pattern as Aβ1-40, suggesting that these species have similar aggregation characteristics. These results suggest that initial plaque formation is seeded by Aβ1-42; a process that is followed by plaque maturation upon deposition of Aβ1-40 as well as deposition by other C-terminally modified Aβ species
    • …
    corecore