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Abstract
Induced pluripotent stem cell (iPSC) technology enables the generation of human neu-
rons in vitro, which contain the precise genome of the cell donor, therefore permitting 
the generation of disease models from individuals with a disease-associated geno-
type of interest. This approach has been extensively used to model inherited forms of 
Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived 
neuronal models with targeted mass spectrometry analysis has provided unprece-
dented insights into the regulation of specific proteins in human neuronal physiology 
and pathology. For example enabling investigations into tau and APP/Aβ, specifically: 
protein isoform expression, relative levels of cleavage fragments, aggregated species 
and functionally critical post-translational modifications. The use of mass spectrome-
try has enabled a determination of how closely iPSC-derived models recapitulate dis-
ease profiles observed in the human brain. This review will highlight the progress to 
date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and 
dementia. We go on to convey our optimism, as studies in the near future will make 
use of this precedent, together with novel techniques such as genome editing and 
stable isotope labelling, to provide real progress towards an in depth understanding 
of early neurodegenerative processes and development of novel therapeutic agents.
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1  | AL ZHEIMER' S DISE A SE

Alzheimer's disease (AD) is characterized by two main pathologies: 
the extracellular deposition of Aβ peptides in amyloid plaques and 
the intracellular deposition of the tau protein in neurofibrillary 
tangles. Studies of autosomal-dominant AD have placed amyloid 
upstream of tau, with causative mutations in the genes encoding 
the amyloid precursor protein (APP), presenilin-1 (PSEN1) and pre-
senilin-2 (PSEN2) (Hardy,  2017). However, there is substantial evi-
dence that tau plays a central role in AD pathogenesis. The extent 
of tau pathology correlates with symptom severity and the extent 
of neurodegeneration (Braak et  al.  2003); tau knockout or reduc-
tion is protective against amyloid toxicity in pre-clinical models 
(Gheyara et al. 2014; Ittner et al. 2010; Roberson et al. 2007; Vossel 
et  al.  2010); and mutations in the tau gene, (MAPT) cause fronto-
temporal dementia (FTD) (Hutton et al. 1998; Poorkaj et al. 1998), 
confirming a causative link between tau dysfunction and neurode-
generation. Thus, understanding the two pathologies of AD and the 
molecular mechanisms linking them to neurodegeneration is an area 
of intense research. Pre-clinical models recapitulating the main pa-
thologies are key to this endeavour.

2  | INDUCED PLURIPOTENT STEM CELL 
MODEL S OF AL ZHEIMER' S DISE A SE

Although multiple in vitro and in vivo models of AD and FTD exist, it 
is only recently that induced pluripotent stem cell (iPSC) technology 
has enabled the generation of unlimited numbers of human neurons 
in the lab. Pluripotency can be induced in terminally differentiated 
cells such as fibroblasts by transduction with the four reprogram-
ming factors cMYC, SOX2, OCT4 and KLF4. The resulting iPSC are 
indistinguishable from human embryonic stem cells (hESC) and can 
be differentiated into all three germ lineages (Takahashi et al. 2007).

Thus, by generating iPSC from a patient with a genotype and/or 
phenotype of interest and differentiating those cells into a disease-
relevant cell type, patient-specific in vitro models containing the 
participant's precise genome can be used for pre-clinical studies of 
disease mechanisms. This approach has revolutionized the in vitro 
modelling of neurodegenerative disease, by permitting a limitless in 
vitro supply of human neurons and glia with disease-causing genes 
expressed at endogenous levels. The ability to generate distinct 
neuronal subtypes together with astrocytes and microglia from iPSC 
is particularly advantageous for diseases such as the tauopathies, 
where the pathophysiological characteristics are not confined to one 
specific cell type. In the tauopathies, both neurons and/or glial cells 
can display abnormal tau deposition, aggregates and /or hyperphos-
phorylated tau. For example primary age-related tauopathy (PART) 
and ageing-related tau astrogliopathy (ARTAG) are pure neuronal and 
astroglial tauopathies, respectively, whereas globular glial tauopathy 
(GGT), Pick's disease (PiD), progressive supranuclear palsy (PSP), cor-
ticobasal degeneration (CBD), argyrophilic grain disease (AGD) and 
Frontotemporal dementia with parkinsonism-17 (FTDP-17) present 

both neuronal and glial cell involvement (Crary et al. 2014; Kovacs 
et al. 2016; Ahmed et al. 2013; Buée & Delacourte, 1999; Sergeant 
et al. 2008; Sergeant et al. 1999; Yoshida, 2014; Togo et al. 2002; 
BRAAK & BRAAK,  1989; Yamada et  al.  1992; Ferrer et  al.  2019; 
Mackenzie & Neumann,  2016). Furthermore, the neuronal tau ag-
gregates can be found in different brain regions depending on the 
disease: PSP and CBD display prominent tau pathology in the brain 
stem, for example while predominantly cortical tau pathology is 
present in AD. iPSC technology, therefore offers the opportunity for 
the specific cell type affected in disease to be generated in vitro in 
order to investigate the selective vulnerability of specific cell popu-
lations to pathology.

Although animal models have been widely used to gain mecha-
nistic insights into AD, it has been particularly challenging to gen-
erate models that develop plaques, tangles and neurodegeneration 
within a single system, often requiring exogenous overexpression of 
multiple mutant genes (Oddo et al. 2003). This raises the possibil-
ity that human neurons are selectively vulnerable to AD-associated 
pathologies. The use of rodent models has also been hampered by 
species-specific features of the protein of interest, for example al-
ternative splicing of the tau protein, which is complex, developmen-
tally regulated and differs between rodents and humans (Goedert 
et al. 1989; Kosik et al. 1989; Takuma et al. 2003). Importantly, the 
lack of translation of Aβ and tau-targeted therapeutics from pre-
clinical studies to clinical success supports the need for refined mod-
els. iPSC therefore provide an attractive approach to address this 
gap in our toolkit, acting as a human, physiologically relevant model 
to study the mechanism of a disease in the specific cell type which 
is selectively vulnerable in disease, and in the absence of exogenous 
gene expression.

Despite the advantages offered by iPSC, there are still some lim-
itations associated with this model, particularly concerns around the 
maturity of differentiated cell types. iPSC are ‘rejuvenated’, that is 
the reprogramming process erases the cellular epigenetic signatures 
associated with donor age(Lee et  al.  2020). Furthermore, multiple 
studies have shown that iPSC-neurons closely resemble neurons, for 
example using transcriptomic comparisons (Patani et al. 2012). This 
must be taken into consideration when studying diseases such as 
AD where age is a major risk factor. This can now be overcome in 
part by using transdifferentiation to directly convert fibroblasts into 
neurons, bypassing an iPSC intermediate, which allows cells to retain 
epigenetic signatures of ageing (Mertens et al. 2015). Nonetheless, 
iPSC are the only means to obtain an unlimited supply of patient-
specific neurons and glia for the study of disease mechanisms, and 
permit the direct cellular consequences of disease-associated muta-
tions to be studied.

Progress made using iPSC technology to model AD and FTD 
linked to MAPT mutations is reviewed here (Arber et al. 2017; Lines 
et al. 2020). In this review, we focus specifically on insights gained 
from the use of mass spectrometry in conjunction with these models, 
and how this has enabled the precise measurement of peptide iso-
forms, cleavage fragments, multimeric species and post-translational 
modifications.
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3  | MA SS SPEC TROMETRY IN 
AL ZHEIMER' S DISE A SE RESE ARCH

Over the last few decades, mass spectrometry-based analysis of Aβ 
has focused primarily on identification and quantification in CSF, 
plasma and brain tissue (Portelius, Bogdanovic, et al. 2010; Portelius 
et al. 2012; Wildburger et al. 2017; Nakamura et al. 2018). Mass spec-
trometry (MS) analytical strategies can vary considerably across 
studies, however, the most common approaches used for the analy-
sis of Aβ so far have been matrix-assisted laser desorption/ionization 
(MALDI) or surface enhancement laser desorption/ionization (SELDI) 
coupled to a time-of-flight (TOF) mass spectrometer as well as liquid 
chromatography-tandem mass spectrometry (LC-MS/MS). A mo

re detailed overview and technical comparison of these tech-
niques for Aβ detection and quantification can be found here (Bros 
et  al.  2015). MALDI-TOF MS provides a sensitive, accurate and 
rapid method for the relative quantification of Aβ species. Targeted 
LC-MS/MS approaches have commonly used electrospray ioniza-
tion (ESI) in setups using high-performance liquid chromatography 
(HPLC) or ultra performance liquid chromatography (UPLC) coupled 
to a triple quadrupole mass spectrometer, which offer high specific-
ity, absolute quantification and multiplexing capabilities. A common 
feature between these approaches has been the need for enrich-
ment of Aβ peptides during sample preparation, likely because of the 
low abundance of Aβ peptides in complex sample matrices. This has 
most commonly been achieved by immunoprecipitation (IP) using 
antibodies targeting the mid domain (4G8) and N-terminus (6E10) 
of the Aβ peptide before MS analysis. Although IP-MALDI-TOF and 
SELDI-TOF MS approaches offer relative quantification, they have 
played a pivotal role in identifying novel and truncated Aβ species, 
and with less system complexity and at lower costs than LC-MS/MS 
(Lewczuk et al. 2004; Maddalena et al. 2004; Portelius et al. 2007).

Similar to Aβ, MS-based approaches have played a critical role in 
the characterization of tau in AD research. In the human central ner-
vous system there are six different tau isoforms that are produced 
and these are subject to extensive post-translational modifications 
in both normal and disease conditions (Kametani et al. 2020; Morris 
et al. 2015). It is this vast heterogeneity of tau species that has posed a 
particular analytical challenge to mass spectrometrists. Furthermore, 
thorough characterization and quantification of tau proteoforms by 
MS has been further complicated by their low concentration in CSF. 
Therefore, profiling of tau species in CSF has previously required 
the use of well-established tau antibodies to enrich for specific iso-
forms/phosphorylation sites by IP before subsequent MS-based 
analysis (Portelius et al. 2008). In the last decade the introduction 
of quadrupole-Orbitrap hybrid mass spectrometers has allowed 
for parallel reaction monitoring (PRM) strategies to be developed; 
utilizing the high resolution and high mass accuracy capabilities of 
these instruments these methods offer a targeted approach that has 
high selectivity, high sensitivity and multiplexing capabilities (Gallien 
et al. 2012; Peterson et al. 2012). It is these PRM-based strategies in 
particular that have most recently advanced our understanding and 
interpretation of tau truncation and metabolism in AD both in vivo 
and in vitro (Barthélemy et al. 2016, 2019, 2020; Sato et al. 2018).

4  | Aβ  GENER ATION FROM APP

Canonical Aβ is produced when APP is sequentially cleaved by 
β-secretase and γ-secretase. However, there exists a spectrum of 
Aβ species that are produced when APP is cleaved by alternate en-
zymes, leading to truncations at both N and C termini (Figure 1). As 
such, Takami et al used a targeted LC-MS/MS approach to show that 
γ-secretase has C-terminal truncating activity as the longest forms 

F I G U R E  1   Amyloid-beta sequence, cleavage sites and insights from mass spectrometry. (a) The amino acid sequence of Aβ, with residues labile 
to post-translational modifications highlighted: Green—phosphorylation and dityrosine/nitrotyrosine/nitration of serine and tyrosine residues. Gold—
pyroglutamate modification of glutamic acid residues. Red—racemization/isomerization of aspartic acid residues. Arrows show the sites of secretase 
cleavage of Aβ. (b) Information learned from iPSC models subject to mass spectrometry analysis. Predominant forms of Aβ in different stages of 
neuronal differentiation (Bergström et al. 2016). The finding that N terminal cleavage can direct C terminal endoproteolysis (Siegel et al. 2017). 
The anti-amyloidogenic role of BACE2 in reducing relative amounts of amyloidogenic species in Down's syndrome neurons (Alić et al. 2020). The 
specificity of avermectins, increasing the processivity of γ-secretase while leaving short species of Aβ unchanged (Brownjohn et al. 2017)
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of Aβ (Aβ1-49 and Aβ1-48) are successively processed through par-
allel tripeptide cleavage pathways (Aβ1-49  >  46>43  >  40 versus 
Aβ1-48  >  45>42) to produce the most abundant fragments of Aβ 
(Takami et al. 2009).

In CSF, Aβ1-40 is the most abundant species (Portelius 
et al. 2010). The relative levels of other C-terminally truncated Aβ 
species such as Aβ1-42 and Aβ1-43 are prognostic for familial AD 
and diagnostic for amyloid plaque pathology in both familial and 
sporadic forms of the disease. These longer forms are a major con-
stituent of pathological amyloid plaques, presumably because of in-
creased hydrophobicity and enhanced aggregation. As a result the 
Aβ1-42:Aβ1-40 ratio in the CSF is used as a diagnostic test of AD 
(Janelidze et al. 2016).

The second most abundant form of Aβ is Aβ1-17, which is also 
potentially β- and γ-secretase-dependent (Pérez-Grijalba et al. 2014; 
Portelius et al. 2011). Shorter, non-amyloidogenic isoforms ranging 
from Aβ1-13 to Aβ1-16 have been proposed to be α- and β-secretase 
dependent (Portelius et  al.  2011). Additionally, several Aβ species 
are produced by β-secretase cleavage alone (BACE1 and BACE2 
cleavage), producing species such as Aβ1-19, Aβ1-20 and Aβ1-34 (Shi 
et al. 2003; Yan et al. 2001). Other enzymes (e.g. MMP2, MMP9 and 
Caspases) have been shown to be implicated in the generation of 
further Aβ species (e.g. Aβ1-30) but are less well studied (Baranello 
et al. 2015).

N-terminal truncation of Aβ includes cleavage at residues 2, 
4, 5 and 11, each thought to be β-secretase dependent (Vassar 
et  al.  1999). Importantly, these N-terminally truncated Aβ forms, 
such as Aβ3-40/42 and Aβ11-40/42, have been shown to be targets 
of post-translational modifications such as pyroglutamate modifica-
tion at glutamic acid 3 or 11; generating key amyloidogenic species 
(Mori et al. 1992; Saido et al. 1996). These modified Aβ forms are not 
secreted by neurons but appear to form in the tissue and may well 
be Aβ plaque-specific.

Therefore, there is a huge diversity of Aβ species outside the 
well-known Aβ1-40 and Aβ1-42. Mass spectrometry has been crit-
ical in detecting and distinguishing between various Aβ species in 
human brain tissue, CSF and plasma, and these approaches have re-
cently been applied to iPSC models of AD.

5  | Aβ  DETEC TION IN IPSC- DERIVED 
NEURONS

To date, only a handful of studies, all using IP-MALDI-TOF MS, 
have investigated the entire spectrum of Aβ species produced in 
iPSC-derived neurons (Bergström et  al.  2016; Arber et al. 2020). 
Bergström and colleagues analysed the Aβ spectrum produced 
throughout iPSC differentiation; from the stem cell stage, through 
neural specification, to mature neuronal cultures (Bergström 
et  al.  2016). APP expression and protein levels were found to be 
relatively consistent throughout differentiation, however, the pro-
cessing of APP and the resultant Aβ species was tightly controlled 
in a cell stage-specific manner. Short Aβ peptides, Aβ1-15, Aβ1-16 

and Aβ1-17, were primarily produced from days 10 to 25, at time 
points before the specification of neurons. This is consistent with 
predominant α-secretase cleavage. From day 60 of differentiation 
onwards, after the generation of functional glutamatergic neurons 
(Kirwan et al. 2015; Shi et al. 2012), the majority of Aβ species pro-
duced were β- and γ-secretase-dependent, represented by Aβ1-40, 
Aβ1-42, Aβ1-38 and Aβ1-34. This study elegantly shows that Aβ is 
produced in a cell type and cell stage-dependent manner, giving 
an insight into human developmental regulation of Aβ processing. 
β-secretase expression (BACE1 and BACE2) and activity appear to 
be neuronally enriched, supporting the view that amyloidogenic Aβ 
is primarily generated within the neuronal population.

It has been shown that the Aβ spectrum produced from iPSC-
derived neurons is a representative model of the in vivo setting. 
Arber and colleagues showed that the most abundant species are 
Aβ1-40, Aβ1-17, Aβ1-34, Aβ1-38 and Aβ1-19 (Arber et al. 2020), 
which is similar to the profiles in CSF. In addition to the expected 
C-terminally processed Aβ species, representative N terminally trun-
cated species were also detectable, including Aβ2-x, Aβ4-x, Aβ5-x 
and Aβ11-x (Arber et al. 2020).

iPSC-derived neuronal models contributed to a detailed analy-
sis of the N-terminal truncation of Aβ and the downstream conse-
quence on C-terminal processing. Siegel and colleagues show that 
when Aβ is cleaved by α-secretase at residue 17, γ-secretase effec-
tively processes the C-terminus to Aβ40 (Aβ17-40). However, when 
the substrate for γ-secretase is β-secretase dependent (Aβ1-x or 
Aβ11-x), proportionally longer Aβ is produced (i.e. Aβ1-42 or Aβ11-
42) (Siegel et  al. 2017). Enrichment for the APP intracellular do-
main (C terminal to Aβ) by IP followed by MALDI-TOF MS analysis 
showed that this effect was in part driven by different endopro-
teolytic cleavage sites of γ-secretase on APP. α-secretase cleaved 
substrates predisposed Aβ17-49 (and the Aβ49  >  46>43  >  40 
processing pathway) whereas β-secretase cleaved substrates pre-
disposed Aβ1-48 or Aβ11-48 (and the Aβ48 > 45>42 processing 
pathway), thereby helping to explain the differences in relative 
Aβ1-42 production.

In sum, these studies help to show the value of iPSC models 
in recapitulating the in vivo spectrum of Aβ generation (Figure 1). 
Additionally, mechanistic insights can be gained, such as the work 
by Siegel et al, explaining how the balance of Aβ1-40 and Aβ1-42 is 
achieved.

6  | MODELLING FAMILIAL AL ZHEIMER' S 
DISE A SE

Stem cell models of Aβ generation have primarily focused on the ratio 
of Aβ1-42:Aβ1-40 (for review see Arber et al., 2017). It is widely ac-
cepted that mutations in PSEN1 reduce the processivity of γ-secretase 
(Chávez-Gutiérrez et  al.  2012; Szaruga et  al.  2017), increasing the 
relative production of Aβ1-42 compared to Aβ1-40. Indeed, this has 
been corroborated using mutant PSEN1 iPSC models (Yagi et al. 2011; 
Woodruff et al. 2013; Duan et al. 2014; Mahairaki et al. 2014; Sproul 
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et  al.  2014; Koch et  al.  2012; Moore et  al.  2015; Arber et al. 2020; 
Kwart et  al.  2019; Raja et  al.  2016; Liu et  al.  2014; Arber, Villegas-
Llerena, et al., 2019). Additionally, mutations around the γ-secretase 
cleavage site in APP have been shown to have a similar effect in the 
Aβ1-42:Aβ1-40 ratio, although this is achieved via favouring of the 
Aβ48 > 45>42 tripeptide cleavage pathway (Arber et al. 2020; Kondo 
et al. 2013; Kwart et al. 2019; Moore et al. 2015; Muratore et al. 2014). 
Mutations around the β-secretase cleavage site or additional copies 
of APP because of local genomic duplications or Down's syndrome in-
crease the total production of Aβ (Alić et al. 2020; Chang et al. 2015; 
Israel et  al.  2012; Kondo et  al.  2013; Kwart et  al.  2019; Moore 
et al. 2015; Raja et al. 2016; Shi, Kirwan, Smith, MacLean, et al., 2012).

These studies help to reinforce mechanistic studies of γ-secretase 
in a human model of familial AD expressing APP and secretase en-
zymes at physiological levels. However, studies using MALDI-TOF 
MS have been able to advance these mechanistic insights. Mutations 
affecting the extracellular domain of PSEN1 (Y115H, Y115C and the 
splicing mutation int4del) display a relative increase in production of 
short species Aβ1-14, Aβ1-15 and Aβ1-16 (Moore et al. 2015; Arber 
et al. 2020). This effect is not shared by PSEN1 mutations in other 
domains of the protein and so may be a direct consequence of muta-
tions to this substrate-binding domain (Takagi-Niidome et al. 2015). 
The relative increase in short Aβ species suggests an overall reduc-
tion in γ-secretase activity and a concomitant increase in β- and/or 
α-secretase activity.

In the last decade, iPSC technology has enabled the generation 
of organoids (organ-like three-dimensional tissues). Brain organoids 
provide an in vitro model that recapitulates the development of the 
human brain in which multilayers of several cell lineages self-assemble 
and create an architecture of embryonic human brain-like compart-
mentalization (e.g. forebrain, midbrain and hindbrain) with complex 
neural networks (Lancaster et al. 2013; Lancaster and Knoblich 2014; 
Lancaster et al. 2017; Qian et al. 2016, 2018; Jo et al. 2016). Therefore, 
the investigation of tissue development and disease state could be 
studied in a more ‘physiological’ multicellular model rather than into 
a single-dimensional cellular level. Gonzalez and colleagues success-
fully generated cerebral organoids from people affected with fAD 
(PSEN1 mutation), Down syndrome and Creutzfeldt–Jakob disease. 
Over time, pathological features of AD were observed in the cerebral 
organoids, including Aβ and tau aggregates (Gonzalez et al. 2018). 
Furthermore, using a different organoid generation protocol, Raja 
and colleagues were able to reduce amyloid and tau pathology using 
β- and γ-secretase inhibitors treatment (Raja et al. 2016). Recently, 
the validity of cerebral organoids as a model for investigating AD dis-
ease was further confirmed when AD patient-derived organoids with 
either APOE ε3/ ε3 or APOE ε4/ε4 mutations recapitulated increased 
levels of Aβ and phosphorylated tau (Zhao et al. 2020).

Relative Aβ generation was further investigated in iPSC-derived 
cerebral organoid models of Down's syndrome (DS) (Alić et al. 2020). 
The presence of three copies of APP because of duplication muta-
tions predispose familial Alzheimer's disease with complete pene-
trance. APP is located on chromosome 21, and so individuals with 
DS also carry three copies of the APP gene. However, in contrast 

to APP duplication carriers, people with DS have only a 70% likeli-
hood of developing Alzheimer's disease, suggesting the presence of 
protective genes on chromosome 21. Alić and colleagues presented 
data to support an anti-amyloidogenic role for the β-secretase gene 
BACE2, a gene also present in three copies in DS. When analysing 
Aβ isoforms generated by cerebral organoids, there was an increase 
in Aβ1-19 and Aβ1-34 relative to amyloidogenic species (Aβ1-40 
and Aβ1-42) in Down's syndrome organoids when compared to 
isogenic diploid cells and APP duplication organoids. This increased 
BACE2-associated β-secretase activity, therefore, reduces the rel-
ative amount of amyloidogenic Aβ species. The authors witnessed 
a concomitant reduction in disease-like signatures in DS organoids 
compared to APP duplication lines, such as amyloid-like immunocy-
tochemical staining. Genetic reduction of BACE2 to two copies in tri-
somic cells exacerbated these disease-like phenotypes, supporting 
a protective role for BACE2. Together these data demonstrate the 
delicate balance of cleavage activity and the importance of investi-
gating the entire Aβ spectrum in a physiological model.

Finally, mass spectrometry analyses of iPSC-derived Aβ spe-
cies can have a central role in drug discovery. Brownjohn and col-
leagues screened compounds capable of increasing the processivity 
of γ-secretase in Down's syndrome and familial AD iPSCs, i.e. mol-
ecules capable of increasing the Aβ1-38:Aβ1-42 ratio (Brownjohn 
et  al.  2017). Importantly, mass spectrometry was used to support 
the finding that the lead compounds, avermectins, increased the 
generation of Aβ1-37 and Aβ1-38 at the expense of Aβ1-40 and Aβ1-
42 without affecting smaller, γ-secretase-independent Aβ species. 
This selectivity of lead compounds is highly desirable in putative 
therapeutic agents.

Together, these studies demonstrate the importance of a repre-
sentative appreciation for the entire Aβ spectrum (Figure 1). Mass 
spectrometry analysis, together with iPSC technology, highlight 
the interdependence and the delicate balance of different enzyme 
cleavages of Aβ. An understanding of the Aβ spectrum and this en-
zymatic balance is crucial when analysing the effect of therapeutic 
drug candidates or inherited Alzheimer's disease-linked mutations.

7  | FUTURE DIREC TIONS

Future work to analyse Aβ species without immunoprecipitation will 
be informative, as new truncated species, unknown post-translational 
modifications and multimeric/aggregated species may be defined in 
this way. The use of immunoprecipitation can lead to bias in the spe-
cies analysed, for example certain post-translational modifications 
can alter the binding of antibodies used in immunoprecipitation. Of 
particular interest, examples of modified Aβ include pyroglutamate-
modified species at glutamic acid residues 3 and 11 (Perez-Garmendia 
& Gevorkian, 2013), phosphorylation at serine 8 and serine 26 (Kumar 
et al. 2011, 2013), nitration at tyrosine 10 (Kummer et al. 2011), race-
mization/isomerization at aspartic acids 1, 7, 23 and 26 (Warmack 
et  al.  2019) and dityrosine/nitrotyrosine modifications also at ty-
rosine 10 (Al-Hilaly et al. 2014) (Figure 1). To date, little information 
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exists about the post-translational modification of Aβ species derived 
from iPSC-neurons and these investigations will be highly informa-
tive. For example pyroglutamate modifications might be co-culture 
or cell state dependent, as transglutaminase activity may be glial 
cell derived and dependent on inflammatory conditions (Wilhelmus 
et al. 2016). Furthermore, Aβ modifications may emerge in a temporal 
manner that could be linked to disease severity, as recently shown for 
tau (Dujardin et al. 2020; Wesseling et al. 2020).

8  | TAU

Hyperphosphorylated aggregates of the microtubule-associated 
protein tau are a pathological hallmark of a diverse group of neurode-
generative diseases collectively termed as tauopathies. Alzheimer's 
disease (AD) is the most common tauopathy, although it is in fact a 
secondary tauopathy; tau is downstream of altered Aβ production 
as evidence by the genetics of fAD as described above. The most 
common primary tauopathies (where tau is the defining pathological 
feature) include progressive supranuclear palsy (PSP), corticobasal 
degeneration (CBD) and frontotemporal dementia linked to muta-
tions in the MAPT gene that encodes tau (Guo et al. 2017). It was 
the discovery of MAPT mutations that confirmed a causative link 
between tau dysfunction and neurodegenerative disease, and high-
lighted the importance of understanding the mechanisms linking tau 
to neuronal demise (Hutton et al. 1998; Poorkaj et al. 1998).

Alternative splicing of MAPT results in six protein isoforms of tau 
in the human central nervous system, differing by the presence of 
0, 1 or 2 repeats at the N-terminus of the protein (0N, 1N or 2N), 
and 3 or 4 microtubule-binding repeats at the C-terminus (3R or 4R). 
The expression of precise ratios of tau isoforms is regulated develop-
mentally and dysregulated in disease, which will be discussed further 
below. Tau is further complicated by its extensive post-translational 
modification. The most heavily studied of these is phosphorylation 
(Hanger et al. 2009). The phosphorylation of tau plays an important 
role in regulating its function, with phosphorylation at specific resi-
dues favouring the detachment of tau from the microtubules. In dis-
ease, tau is hyperphosphorylated, and the aberrant phosphorylation 
of tau may drive its aggregation.

There are 84 serine, threonine and tyrosine residues in tau, and 
mass spectrometry has enabled the direct identification of at least 51 
specific phosphorylation sites in both in vitro and in vivo pre-clinical 
models, as well as directly in control and disease post-mortem brain 
tissue (Hanger et al. 2007; Wray et al. 2008). Additionally, in vitro 
studies have enabled candidate kinases for many phosphorylation 
sites to be identified, including GSK3β, CDK5 and CK1 (Hanger 
et al. 2009). A comprehensive list of tau phosphorylation sites iden-
tified in different diseases together with the kinases able to mediate 
phosphorylation at specific sites can be found here: https://docs.
google.com/sprea​dshee​ts/d/1hGYs​1Zcup​mTnbB​7n6qs​1r_WVTXH​
t1O7N​BLyKB​N7EOU​Q/edit#gid=0

Beyond phosphorylation, tau is also the target of numerous other 
post-translational modifications (PTMs) including ubiquitination, 

acetylation, nitration, glycosylation and cleavage (Morris et al. 2015). 
A thorough catalogue of 170 distinct tau PTMs has recently been 
described in control and disease tissue (Kametani et al. 2020), and 
tau PTM state can correlate with clinical severity and heterogeneity 
(Barthélemy et al. 2020; Dujardin et al. 2020; Wesseling et al. 2020). 
Thus, there is a diverse range of tau species existing within a neuron 
at any one time, and it is important to understand the range of tau 
species, their disease specificity and the temporal manner in which 
they appear in disease.

There are a limited number of studies that have used mass spec-
trometry to analyse tau in iPSC-neurons, these are discussed below.

9  | MA SS SPEC TROMETRY ANALYSIS OF 
TAU IN IPSC

Tau splicing is developmentally regulated, with only the smallest tau 
isoform (0N3R) expressed at foetal stages (Goedert et al. 1989; Hefti 
et al. 2018). Additionally, splicing is dysregulated in disease, particu-
larly in a subgroup of tauopathies where excess 4R is observed, 
including PSP and CBD. Intronic and splice-site mutations in and 
around exon 10 of MAPT cause an increase in 4R tau and are causa-
tive of FTD, confirming a causal link between disrupted tau splic-
ing and neurodegeneration (Hutton et al. 1998). Tau splicing is also 
species-specific, and rodent models do not recapitulate the human 
pattern of tau isoforms (Yu et al. 2009). There has therefore been a 
great deal of interest in studying tau splicing in human neurons gen-
erated from iPSC. A number of studies have now shown that 0N3R is 
the predominant isoform expressed by iPSC neurons. Variable levels 
of 4R tau isoforms appear at varying culture times, and dependent 
on differentiation protocol, as detected by techniques including RT-
PCR, qPCR and western blot (Beevers et al. 2017; Iovino et al. ,2010, 
2015; Sposito et al. 2015). Mass spectrometry provides the oppor-
tunity for the unambiguous detection of tau isoforms by confirming 
the presence of isoform-specific peptides at exon-exon junctions.

Disruption of the nuclear membrane and nucleocytoplasmic 
transport was observed in iPSC-neurons with the MAPT 10  +  16 
and P301L mutations (Paonessa et  al.  2019). As P301L resides 
within exon 10, which is only expressed in 4R isoforms, there is 
a requirement for 4R expression in order to have mutant pro-
tein present in the model. This was confirmed by MALDI-TOF/
TOF mass spectrometry, which identified 4R-specific peptides 
from both the wild-type (HVPGGGSVQIVYKPVDLSK) and mutant 
(HVLGGGSVQIVYKPVDLSK) alleles (Paonessa et  al.  2019). This 
confirms the presence of 4R tau, but does not provide quantitative 
information on the stoichiometry of the different tau isoforms. Sato 
et al used quantitative proteomics to assess the levels of 4R tau in 
iPSC-neurons and post-mortem brain tissue via the detection of 
two 4R-specific peptides, LDLSNVQSK (amino acids 282-290) and 
HVPGGSVQIVYK (amino acids 299-311) (Sato et  al.  2018). As ex-
pected, the 4R tau signal in the brain was around 50% of the total 
tau signal, corresponding to equimolar amounts of 3R:4R. In contrast, 
very low levels of 4R peptide could be detected in iPSC-neurons, 

https://docs.google.com/spreadsheets/d/1hGYs1ZcupmTnbB7n6qs1r_WVTXHt1O7NBLyKBN7EOUQ/edit#gid=0
https://docs.google.com/spreadsheets/d/1hGYs1ZcupmTnbB7n6qs1r_WVTXHt1O7NBLyKBN7EOUQ/edit#gid=0
https://docs.google.com/spreadsheets/d/1hGYs1ZcupmTnbB7n6qs1r_WVTXHt1O7NBLyKBN7EOUQ/edit#gid=0
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suggesting that at 6 weeks of culture, levels of total tau are around 
100-fold less than in the brain. A similar approach was unable to iden-
tify peptides corresponding to 1N or 2N tau isoforms in iPSC-neurons 
at 5 weeks of differentiation. Low levels of the 4R-specific peptide 
were detected in comparison to tau peptides ubiquitously present in 
all isoforms, further confirming the predominance of 0N3R in iPSC-
neurons (Silva et al. 2016).

Further studies of the detailed quantification of altered splic-
ing in neurons with FTD-linked splicing mutations will be of great 
interest, to help decipher developmental regulation and disease-
associated dysfunction in naïve human neurons.

10  | TAU POST-TR ANSL ATIONAL 
MODIFIC ATION IN IPSC- NEURONS

Tau phosphorylation is also developmentally regulated, with high 
phosphorylation in early development thought to be related to 
the requirement for dynamic remodelling of the microtubule net-
work (Brion et al. 1993). Hyperphosphorylation of tau is observed 
across the tauopathies, and accurate determination of the sites of 
phosphorylation and the relative stoichiometry in control versus 
disease is important in inferring the presence of “pathological” tau 
in pre-clinical models. The majority of studies using iPSCs to model 
tauopathy have examined phosphorylation at specific sites using 
phospho-specific antibodies, although a few studies have directly 
identified sites of phosphorylation using mass spectrometry.

Although the direct identification of phosphorylation sites on 
tau by mass spectrometry is informative, it is important to note 
that many of the same phosphorylation sites occur in development, 
control adult brain tissue and disease states (Kametani et al. 2020). 
Multiple quantitative approaches to allow the stoichiometry of phos-
phorylation at particular sites have been developed and will enable 
future work to identify disease-associated changes. FLEXI-tau is a 
mass spectrometry-based assay that quantifies the ratio of modified/
unmodified peptides in a culture system, with a decrease in the levels 
of unmodified peptides indicative of PTMs within the peptide (Mair 
et al. 2016). Caterina-Silva et al. used the FLEXI-tau assay to inves-
tigate post-translational-modifications of tau in iPSC-neurons with 
the A152T variant compared with controls after 5 weeks in culture 
(Mair et al. 2016; Silva et al. 2016). There is an inherent assumption 
in many studies that equal expression from both the mutant and the 
unaffected allele is occurring within cells. A152T neurons showed in-
creased levels of total tau overall, as well as increased levels of mutant 
tau, with A152T tau accounting for ~56.6% of total tau. Modification 
at several known phosphorylation epitopes was increased in A152T 
neurons (S202/205, T231/S235 and S396/S404), suggesting an early 
increase in phosphorylation at disease-associated epitopes in tau 
mutation neurons. The A152T variant creates a potential novel phos-
phorylation site in tau through the addition of an extra threonine 
residue, however, no modifications were observed on the peptide 
covering this region suggesting it is unlikely to be phosphorylated in 
iPSC-neurons (Silva et al. 2016). Using an immunoprecipitation-mass 

spectrometry (IP-MS) approach, an independent study identified 
multiple phosphorylated tau peptides in control neurons, including 
pT212, pS214 and pT217, pS262 and pS356 (Sato et al. 2018).

11  | TAU TURNOVER IN IPSC- NEURONS

Stable isotope labelling kinetics (SILK) allows for the measurement 
of protein production and turnover rates using labelling with heavy 
essential amino acids (typically 13C6-leucine), followed by mass spec-
trometry to distinguish labelled from unlabelled peptides. Heavy 
leucine will be incorporated into newly synthesized proteins during 
the labelling phase, and the relative amount of labelled protein will 
reduce over time because of degradation. A thorough review of SILK 
in neurodegeneration is provided here (Paterson et al. 2019). Sato 
and colleagues used this approach to understand tau turnover in 
iPSC-neurons (Sato et al. 2018).

Interestingly, disease-associated tau species appear to have an 
increased turnover. For example 4R tau had a shorter half-life than 
3R tau, and several tau peptides containing phosphorylation residues 
(T111/S113/T123, T212/214, T217, S262/T263 and S356/T361) 
were shown to have a faster turnover than their non-phosphorylated 
counterparts (Sato et al. 2018), suggesting differential proteostasis 
of specific tau species. It is also intriguing to note that the half-life 
of tau in iPSC-neurons is much shorter than in human participants 
(6.74 ± 0.45 days vs. 23 ± 6.4 days respectively) (Sato et al. 2018). 
This indicates developmental changes in tau proteostasis and is con-
cordant with the idea that protective mechanisms against protein 
aggregation may become less efficient during ageing.

Further insights into the regulation of tau have been obtained 
by the identification of secreted tau fragments in the conditioned 
media from iPSC-neurons previously labelled with 13C6-leucine. 
Specifically, N-terminal fragments of tau were observed in cell 
culture media, but no peptides covering the C-terminal region (in-
corporating the microtube-binding repeats) were observed (Sato 
et al. 2018). Together with antibody epitope mapping, the cleavage 
site was suggested to be between residues 210–230 of tau. The lev-
els of labelled fragments increased in the media 3 days after label-
ling stopped, suggesting the cleavage and secretion of this fragment 
is a regulated, physiological process (Sato et al. 2018). The work by 
Sato et al. helped to change our understanding of tau in AD; the 
increase in total-tau and phosphorylated-tau seen extracellularly 
in AD represents an active secretion of phosphorylated and non-
phosphorylated N-terminal tau fragments from live neurons exposed 
to Aβ, not passive release from dying neurons (Zetterberg, 2018).

12  | PROTEOMIC S TO UNCOVER 
MECHANISM OF TAU-LINKED NEURONAL 
DYSFUNC TION

In addition to targeted proteomics, untargeted proteomics can 
provide a global and unbiased insight into dysregulated cellular 
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pathways, an approach commonly utilized for biomarker discovery 
and one that has successfully identified early metabolic changes in 
post-mortem AD brain tissue (Johnson et al. 2020). Tau pathology 
progresses throughout the brain in a predictable and defined man-
ner, and recent research has focussed on mechanisms by which tau 
may be transferred from cell to cell (Braak et al. 2003). The propaga-
tion of tau via exosomes has been implicated in this process. Podvin 
and colleagues used iPSC-neurons overexpressing the repeat region 
of tau with the FTD-linked MAPT mutations P301L and V337 M to 
determine whether the presence of mutant tau would affect the 
composition of exosomes (Podvin et al. 2020). Widespread altera-
tions in the proteome of exosomes from neurons expressing mutant 
tau were observed, including almost 245 proteins in control ex-
osomes that were absent in those isolated from tau mutant overex-
pressing neurons. Several proteins uniquely present in tau exosomes 
have previously been linked to AD, including ANP32A, a potential 
modulator of tau phosphorylation, and PEN2, which is a subunit 
of γ-secretase. It would be interesting to further extend this work 
to iPSC-neurons with tau mutations; examining the impact of full 
length, mutant tau at the endogenous level.

13  | FUTURE DIREC TIONS

Although the number of studies using mass spectrometry to ana-
lyse tau in iPSC-neurons is relatively small, they have revealed the 
potential to gain insight into the physiological regulation of tau in 
healthy neurons and disease models. Future studies will likely enable 
a comprehensive characterization of the full range of tau PTMs, as 
previously described for mouse and human tau (Kametani et al. 2020; 
Morris et al. 2015). The importance of mapping tau PTMs has been 
highlighted by recent studies: cryoEM has enabled the detailed visual-
ization of disease-specific tau structures, which may be influenced by 
PTM profile (Arakhamia et al. 2020). Furthermore, specific signatures 
of tau PTMs identified by mass spectrometry in brain tissue and CSF 
have recently been shown to correlate with clinical heterogeneity and 
disease severity in AD (Barthélemy et al. 2020; Dujardin et al. 2020; 
Wesseling et al. 2020). Thus, tau PTMs are directly related to clinical 
outcomes, and detailed profiling in iPSC-neurons will be essential to 
determine the extent to which they recapitulate disease pathologies.

14  | CONCLUSIONS

Induced pluripotent stem cell technology is now over a decade old. 
This technology has enabled ‘disease in a dish’ studies that provide a 
human model of the cell type affected by disease, expressing mutant 
genes at physiological levels. Indeed, the number of iPSC-related 
studies into Alzheimer's disease and dementia has steadily risen over 
the last decade, highlighting the relevance of this tool.

Mass spectrometry used in concert with iPSC technology has 
been instrumental in showing that these pre-clinical models do in-
deed effectively model the in vivo setting. For example Aβ and tau 

are processed in a developmentally regulated manner and mature 
neuronal cultures are able to generate appropriate species of tau and 
Aβ spectra. The stage is now set to further develop these models to 
gain a deeper understanding of molecular mechanisms of neurode-
generation and screen for novel therapeutic agents.

iPSC-derived cultures are reductionist, providing simplified 
models of the brain. This enables a cell-type-specific analysis into 
the consequences of gene mutations. Additionally, these models are 
foetal, because of cellular reprogramming and epigenetic erasure. 
This allows underlying, constitutive effects of a mutation to be dis-
tinguished from late stage, complex neurodegenerative processes. 
What is more, models are continually evolving and the advent of 
3D cerebral organoid techniques (Lancaster et al. 2013) allow cell 
behaviours to be investigated in a model more akin to the develop-
ing brain. Additionally, CRISPR/Cas9 genome editing enables com-
plex genetic manipulations to be performed, such as combinations 
that are not typically present in nature (Cong et al. 2013; Mali et al. 
2013).

Going forward, mass spectrometry will become instrumental 
in these studies (Figure  1). As well as employing global proteomic 
approaches that can effectively describe the consequences of in-
herited forms of dementia, detailed analysis of post-translational 
modifications will further our understanding of the earliest events of 
neurodegeneration. Adaptations of these techniques, such as SILK 
provide further crucial information, for example into the kinetics of 
protein turnover.

In sum, the combination of iPSC and mass spectrometry tech-
niques have already proven the value of modelling Alzheimer's dis-
ease in vitro. The time is now for detailed mechanistic insights into 
early neurodegenerative processes and real progress to be made 
with drug discovery platforms towards novel therapeutic agents.
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