6 research outputs found

    The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C

    Get PDF
    Microstructural changes and the understanding of their effect on photocurrent generation are key aspects for improving the efficiency of organic photovoltaic devices. We analyze the impact of a systematically increased amount of the solvent additive diiodooctane (DIO) on the morphology of PBDTTT-C:PC71BM blends and related changes in free carrier formation and recombination by combining surface imaging, photophysical and charge extraction techniques. We identify agglomerates visible in AFM images of the 0% DIO blend as PC71BM domains embedded in an intermixed matrix phase. With the addition of DIO, a decrease in the size of fullerene domains along with a demixing of the matrix phase appears for 0.6% and 1% DIO. Surprisingly, transient absorption spectroscopy reveals an efficient photogeneration already for the smallest amount of DIO, although the largest efficiency is found for 3% DIO. It is ascribed to a fine-tuning of the blend morphology in terms of the formation of interpenetrating donor and acceptor phases minimizing geminate and nongeminate recombination as indicated by charge extraction experiments. An increase in the DIO content to 10% adversely affects the photovoltaic performance, most probably due to an inefficient free carrier formation and trapping in a less interconnected donor-acceptor network

    Development of a robust supramolecular method to prepare well-defined nanofibrils from conjugated molecules

    No full text
    In order to produce materials with tailored structures and functions via supramolecular self-assembly of molecular precursors in a predictable fashion, it is necessary to develop 'supramolecular methods' based on structurally simple 'supramolecular synthons'. Thus, the formation of one-dimensional aggregates from pi-conjugated molecules requires a combination of non-covalent interactions that efficiently suppresses lateral aggregation, promotes one-dimensional aggregation, and is also compatible with a productive pi-pi overlap of the constituent molecules. In the present work, we demonstrate that oligopeptide-polymer derivatives comprising a flexible polymer segment terminally attached to a beta-sheet-forming oligopeptide segment are structurally simple substituents that perfectly fulfill these requirements. We synthesized a matrix of diacetylene model compounds that carried oligopeptide-polymer substituents with varying degrees of polymerization of the attached polymers and different length oligopeptide segments. We combined solution-phase IR spectroscopy, AFM imaging and the topochemical diacetylene polymerization as a highly sensitive probe for the molecular arrangement and the degree of order inside aggregates obtained in organic solvents. The thus determined molecular parameters for the reliable formation of well-defined nanoscopic fibrillar structures with uniform diameters, and defined helical 'core-shell' morphologies were then successfully transferred to analogous perylene bisimide and quaterthiophene derivatives, demonstrating the versatility and robustness of the chosen molecular design

    Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State

    No full text
    Acceptor copolymers with low lowest unoccupied molecular orbital (LUMO) energy levels are key materials for organic electronics. In the present work, quaternization of pyridine-flanked diketopyrrolopyrrole (PyDPPPy) is used to lower the LUMO energy level of the resulting monomer (MePyDPPPy) by as much as 0.7 eV. The drastically changed electronic properties of MePyDPPPy hinder a second methylation step even in an excess of trimethyloxonium tetrafluoroborate and thereby give access to the asymmetric functionalization of N-heterocycle-flanked DPP building blocks. The corresponding n-type polymeric ionene PMePyDPPPyT2 with bithiophene as comonomer forms thixotropic organogels with the p-type polythiophene P(g42T-TT), indicative of specific cross-interactions between this couple of copolymers. Gelation of polymer blend solutions, which is absent for other couples of p-type/ n-type polymers, is of general interest for (co)processing and orientation of different electronic polymers simultaneously into films or filaments. Detailed optical and electronic characterization reveals that films processed from organogels exhibit ground-state electron transfer (GSET) enabled by suitably positioned highest occupied molecular orbital (HOMO) and LUMO energy levels of P(g42T-TT) (-4.07 eV) and PMePyDPPPyT2 (-4.20 eV), respectively. Furthermore, molecular interactions related to gelation and GSET do not appear to significantly influence the morphology of the polymer blend films

    Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State

    No full text
    Acceptor copolymers with low lowest unoccupied molecular orbital (LUMO) energy levels are key materials for organic electronics. In the present work, quaternization of pyridine-flanked diketopyrrolopyrrole (PyDPPPy) is used to lower the LUMO energy level of the resulting monomer (MePyDPPPy) by as much as 0.7 eV. The drastically changed electronic properties of MePyDPPPy hinder a second methylation step even in an excess of trimethyloxonium tetrafluoroborate and thereby give access to the asymmetric functionalization of N-heterocycle-flanked DPP building blocks. The corresponding n-type polymeric ionene PMePyDPPPyT2 with bithiophene as comonomer forms thixotropic organogels with the p-type polythiophene P(g42T-TT), indicative of specific cross-interactions between this couple of copolymers. Gelation of polymer blend solutions, which is absent for other couples of p-type/ n-type polymers, is of general interest for (co)processing and orientation of different electronic polymers simultaneously into films or filaments. Detailed optical and electronic characterization reveals that films processed from organogels exhibit ground-state electron transfer (GSET) enabled by suitably positioned highest occupied molecular orbital (HOMO) and LUMO energy levels of P(g42T-TT) (−4.07 eV) and PMePyDPPPyT2 (−4.20 eV), respectively. Furthermore, molecular interactions related to gelation and GSET do not appear to significantly influence the morphology of the polymer blend films
    corecore