71 research outputs found

    Cone rod dystrophies

    Get PDF
    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, and the visual prognosis is poor. Management aims at slowing down the degenerative process, treating the complications and helping patients to cope with the social and psychological impact of blindness

    Leber Congenital Amaurosis Associated with AIPL1: Challenges in Ascribing Disease Causation, Clinical Findings, and Implications for Gene Therapy

    Get PDF
    Leber Congenital Amaurosis (LCA) and Early Childhood Onset Severe Retinal Dystrophy are clinically and genetically heterogeneous retinal disorders characterised by visual impairment and nystagmus from birth or early infancy. We investigated the prevalence of sequence variants in AIPL1 in a large cohort of such patients (n = 392) and probed the likelihood of disease-causation of the identified variants, subsequently undertaking a detailed assessment of the phenotype of patients with disease-causing mutations. Genomic DNA samples were screened for known variants in the AIPL1 gene using a microarray LCA chip, with 153 of these cases then being directly sequenced. The assessment of disease-causation of identified AIPL1 variants included segregation testing, assessing evolutionary conservation and in silico predictions of pathogenicity. The chip identified AIPL1 variants in 12 patients. Sequencing of AIPL1 in 153 patients and 96 controls found a total of 46 variants, with 29 being novel. In silico analysis suggested that only 6 of these variants are likely to be disease-causing, indicating a previously unrecognized high degree of polymorphism. Seven patients were identified with biallelic changes in AIPL1 likely to be disease-causing. In the youngest subject, electroretinography revealed reduced cone photoreceptor function, but rod responses were within normal limits, with no measurable ERG in other patients. An increasing degree and extent of peripheral retinal pigmentation and degree of maculopathy was noted with increasing age in our series. AIPL1 is significantly polymorphic in both controls and patients, thereby complicating the establishment of disease-causation of identified variants. Despite the associated phenotype being characterised by early-onset severe visual loss in our patient series, there was some evidence of a degree of retinal structural and functional preservation, which was most marked in the youngest patient in our cohort. This data suggests that there are patients who have a reasonable window of opportunity for gene therapy in childhood

    Detection of Variants in 15 Genes in 87 Unrelated Chinese Patients with Leber Congenital Amaurosis

    Get PDF
    BACKGROUND: Leber congenital amaurosis (LCA) is the earliest onset and most severe form of hereditary retinal dystrophy. So far, full spectrum of variations in the 15 genes known to cause LCA has not been systemically evaluated in East Asians. Therefore, we performed comprehensive detection of variants in these 15 genes in 87 unrelated Han Chinese patients with LCA. METHODOLOGY/PRINCIPAL FINDINGS: The 51 most frequently mutated exons and introns in the 15 genes were selected for an initial scan using cycle sequencing. All the remaining exons in 11 of the 15 genes were subsequently sequenced. Fifty-three different variants were identified in 44 of the 87 patients (50.6%), involving 78 of the 88 alleles (11 homozygous and 56 heterozygous variants). Of the 53 variants, 35 (66%) were novel pathogenic mutations. In these Chinese patients, variants in GUCY2D are the most common cause of LCA (16.1% cases), followed by CRB1 (11.5%), RPGRIP1 (8%), RPE65 (5.7%), SPATA7 (4.6%), CEP290 (4.6%), CRX (3.4%), LCA5 (2.3%), MERTK (2.3%), AIPL1 (1.1%), and RDH12 (1.1%). This differs from the variation spectrum described in other populations. An initial scan of 55 of 215 PCR amplicons, including 214 exons and 1 intron, detected 83.3% (65/78) of the mutant alleles ultimately found in these 87 patients. In addition, sequencing only 9 exons would detect over 50% of the identified variants and require less than 5% of the labor and cost of comprehensive sequencing for all exons. CONCLUSIONS/SIGNIFICANCE: Our results suggest that specific difference in the variation spectrum found in LCA patients from the Han Chinese and other populations are related by ethnicity. Sequencing exons in order of decreasing risk is a cost-effective way to identify causative mutations responsible for LCA, especially in the context of genetic counseling for individual patients in a clinical setting

    Genome-wide analyses identify common variants associated with macular telangiectasia type 2

    Get PDF
    Idiopathic juxtafoveal retinal telangiectasis type 2 (macular telangiectasia type 2; MacTel) is a rare neurovascular degenerative retinal disease. To identify genetic susceptibility loci for MacTel, we performed a genome-wide association study (GWAS) with 476 cases and 1,733 controls of European ancestry. Genome-wide significant associations (P < 5 × 10−8) were identified at three independent loci (rs73171800 at 5q14.3, P = 7.74 × 10−17; rs715 at 2q34, P = 9.97 × 10−14; rs477992 at 1p12, P = 2.60 × 10−12) and then replicated (P < 0.01) in an independent cohort of 172 cases and 1,134 controls. The 5q14.3 locus is known to associate with variation in retinal vascular diameter, and the 2q34 and 1p12 loci have been implicated in the glycine/serine metabolic pathway. We subsequently found significant differences in blood serum levels of glycine (P = 4.04 × 10−6) and serine (P = 2.48 × 10−4) between MacTel cases and controls

    Association of a homozygous nonsense mutation in the ABCA4 (ABCR) gene with cone-rod dystrophy phenotype in an Italian family

    No full text
    Genetic variation in the ABCA4 (ABCR) gene has been associated with several distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), retinitis pigmentosa (RP) and age-related macular degeneration. The current model of genotype/phenotype association suggests that patients harboring deleterious mutations in both ABCR alleles would develop RP-like retinal pathology. Here we describe ABCA4-associated phenotypes, including a proband with a homozygous nonsense mutation in a family from Southern Italy. The proband had been originally diagnosed with STGD. Ophthalmologic examination included kinetic perimetry, electrophysiological studies and fluorescein angiography. DNA of the affected individual and family members was analyzed for variants in all 50 exons of the ABCA4 gene by screening on the ABCR400 microarray. A homozygous nonsense mutation 2971G>T (G991X) was detected in a patient initially diagnosed with STGD based on funduscopic evidence, including bull's eye depigmentation of the fovea and flecks at the posterior pole extending to the mid-peripheral retina. Since this novel nucleotide substitution results in a truncated, nonfunctional, ABCA4 protein, the patient was examined in-depth for the severity of the disease phenotype. Indeed, subsequent electrophysiological studies determined severely reduced cone amplitude as compared to the rod amplitude, suggesting the diagnosis of CRD. ABCR400 microarray is an efficient tool for determining causal genetic variation, including new mutations. A homozygous protein-truncating mutation in ABCA4 can cause a phenotype ranging from STGD to CRD as diagnosed at an early stage of the disease. Only a combination of comprehensive genotype/phenotype correlation studies will determine the proper diagnosis and prognosis of ABCA4-associated pathology. Copyright © 2004 S. Karger AG, Basel

    Mutations in NR2E3 can cause dominant or recessive retinal degenerations in the same family.

    Get PDF
    NR2E3, a photoreceptor-specific nuclear receptor (PNR), represses cone-specific genes and activates several rod-specific genes. In humans, mutations in NR2E3 have been associated with the recessively-inherited enhanced short-wavelength sensitive S-cone syndrome (ESCS) and, recently, with autosomal dominant (ad) retinitis pigmentosa (RP) (adRP). In the present work, we describe two additional families affected by adRP that carry a heterozygous c.166G&amp;gt;A (p.G56R) mutation in the NR2E3 gene. Functional analysis determined the dominant negative activity of the p.G56R mutant protein as the molecular mechanism of adRP. Interestingly, in one pedigree, the most common causal variant for ESCS (p.R311Q) cosegregated with the adRP-linked p.G56R mutation, and the compound heterozygotes exhibited an ESCS-like phenotype, which in 1 of the 2 cases was strikingly "milder" than the patients carrying the p.G56R mutation alone. Impaired repression of cone-specific genes by the corepressors atrophin-1 (dentatorubral-pallidoluysian atrophy [DRPLA] gene product) and atrophin-2 (arginine-glutamic acid dipeptide repeat [RERE] protein) appeared to be a molecular mechanism mediating the beneficial effect of the p.R311Q mutation. Finally, the functional dominance of the p.R311Q variant to the p.G56R mutation is discussed

    Genotype-phenotype correlation in Italian families with Stargardt disease

    No full text
    Autosomal recessive Stargardt disease (STGD) has been associated with substantial genetic and phenotypic heterogeneity. By systematic clinical analyses of STGD patients with complete genetic data (i.e. identified mutations on both alleles of the ABCA4 gene), we set out to determine phenotypic subtypes and to correlate these with specific ABCA4 alleles. Twenty-eight patients from 18 families with STGD/fundus flavimaculatus were investigated. All patients were submitted to complete ophthalmologic examination, electrophysiology, fluorescein angiography and ABCA4 gene chip analysis. Two main clinical phenotypes were observed among the examined patients. The severe phenotype was characterized by the onset of the disease <20 years and reduced ERG response, whereas the mild phenotype presented with later onset of the disease and a normal ERG response. Genetic analysis of the ABCA4 gene revealed, in the severe group, more frequently deletions, stop codons and insertions as compared to the mild phenotype group (p = 0.0113 by Fisher's exact test). Moreover, the compound heterozygous mutations G1961E/5018 + 2T → C found in 7 patients from 3 unrelated STGD families were associated with a mild phenotype in all subjects, except 1. This study documented variability of the clinical expression of STGD in relation to the age of onset of the disease, fundus appearance and the ERG response and allowed to subdivide patients into a severe and a mild phenotype group. These findings suggest that an extensive and comprehensive genetic analysis of STGD patients combined with thorough clinical evaluation, including the careful recording of the age of onset of the disease, would allow a more precise prognostic evaluation. Copyright © 2005 S. Karger AG
    corecore