21 research outputs found

    Performance of van der Waals Corrected Functionals for Guest Adsorption in the M-2(dobdc) Metal-Organic Frameworks

    Get PDF
    Small-molecule binding in metal–organic frameworks (MOFs) can be accurately studied both experimentally and computationally, provided the proper tools are employed. Herein, we compare and contrast properties associated with guest binding by means of density functional theory (DFT) calculations using nine different functionals for the M2(dobdc) (dobdc4– = 2,5-dioxido,1,4-benzenedicarboxylate) series, where M = Mg, Mn, Fe, Co, Ni, Cu, and Zn. Additionally, we perform Quantum Monte Carlo (QMC) calculations for one system to determine if this method can be used to assess the performance of DFT. We also make comparisons with previously published experimental results for carbon dioxide and water and present new methane neutron powder diffraction (NPD) data for further comparison. All of the functionals are able to predict the experimental variation in the binding energy from one metal to the next; however, the interpretation of the performance of the functionals depends on which value is taken as the reference. On the one hand, if we compare against experimental values, we would conclude that the optB86b-vdW and optB88-vdW functionals systematically overestimate the binding strength, while the second generation of van der Waals (vdW) nonlocal functionals (vdw-DF2 and rev-vdW-DF2) correct for this providing a good description of binding energies. On the other hand, if the QMC calculation is taken as the reference then all of the nonlocal functionals yield results that fall just outside the error of the higher-level calculation. The empirically corrected vdW functionals are in reasonable agreement with experimental heat of adsorptions but under bind when compared with QMC, while Perdew–Burke–Ernzerhof fails by more than 20 kJ/mol regardless of which reference is employed. All of the functionals, with the exception of vdW-DF2, predict reasonable framework and guest binding geometries when compared with NPD measurements. The newest of the functionals considered, rev-vdW-DF2, should be used in place of vdW-DF2, as it yields improved bond distances with similar quality binding energies

    On the Importance of a Precise Crystal Structure for Simulating Gas Adsorption in Nanoporous Materials

    Full text link
    We show that simulation of gas adsorption in nanoporous sorbents may be highly sensitive to accurate crystallographic coordinates, even for frameworks anticipated to have low flexibility

    Ionothermal synthesis of inorganic-organic hybrid materials containing perfluorinated aliphatic dicarboxylate ligands

    No full text
    Two new hybrid inorganic-organic frameworks containing perfluorinated dicarboxylate ligands have been synthesized ionothermally from a mixture of 1-ethyl-3- methylimidazolium bromide (emim-Br), and triflimide (emim-Tf2N). The cobalt(II) tetrafluorosuccinate, [emim](2)[Co(H2O)(2)(O2CCF2CF2CO2)(2)] (1), is a two-dimensional coordination polymer containing anionic framework layers separated by emim cations. When hexafluoroglutaric acid is used in similar reactions, [emim](2)[Co-3(O2CCF2CF2CF2CO2)(4)(H2O)(4)] (2) forms. Like 1, this phase contains anionic layers of cobalt and the fluorinated carboxylate separated by emim cations. These new phases represent the first examples of ionothermally synthesized materials using perfluorinated aliphatic carboxylates.</p

    M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal-Organic Frameworks Exhibiting Increased Charge Density and Enhanced H2 Binding at the Open Metal Sites

    No full text
    The well-known frameworks of the type M2(dobdc) (dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate) have numerous potential applications in gas storage and separations, owing to their exceptionally high concentration of coordinatively unsaturated metal surface sites, which can interact strongly with small gas molecules such as H2. Employing a related meta-functionalized linker that is readily obtained from resorcinol, we now report a family of structural isomers of this framework, M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni; m-dobdc4– = 4,6-dioxido-1,3-benzenedicarboxylate), featuring exposed M2+ cation sites with a higher apparent charge density. The regioisomeric linker alters the symmetry of the ligand field at the metal sites, leading to increases of 0.4–1.5 kJ/mol in the H2 binding enthalpies relative to M2(dobdc). A variety of techniques, including powder X-ray and neutron diffraction, inelastic neutron scattering, infrared spectroscopy, and first-principles electronic structure calculations, are applied in elucidating how these subtle structural and electronic differences give rise to such increases. Importantly, similar enhancements can be anticipated for the gas storage and separation properties of this new family of robust and potentially inexpensive metal–organic frameworks

    Critical Factors Driving the High Volumetric Uptake of Methane in Cu-3(btc)(2)

    Get PDF
    A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu-3(btc)(2) (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu-3(btc)(2), and its isostructural analogue Cr-3(btc)(2), show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu2+ or Cr2+ cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu-3(btc)(2) are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu-3(btc)(2) itself
    corecore