13 research outputs found

    NKG2D function protects the host from tumor initiation

    Get PDF
    The activation NKG2D receptor has been shown to play an important role in the control of experimental tumor growth and metastases expressing ligands for NKG2D; however, a function for this recognition pathway in host protection from de novo tumorigenesis has never been demonstrated. We show that neutralization of NKG2D enhances the sensitivity of wild-type (WT) C57BL/6 and BALB/c mice to methylcholanthrene (MCA)-induced fibrosarcoma. The importance of the NKG2D pathway was additionally illustrated in mice deficient for either IFN-γ or tumor necrosis factor–related apoptosis-inducing ligand, whereas mice depleted of natural killer cells, T cells, or deficient for perforin did not display any detectable NKG2D phenotype. Furthermore, IL-12 therapy preventing MCA-induced sarcoma formation was also largely dependent on the NKG2D pathway. Although NKG2D ligand expression was variable or absent on sarcomas emerging in WT mice, sarcomas derived from perforin-deficient mice were Rae-1+ and immunogenic when transferred into WT syngeneic mice. These findings suggest an important early role for the NKG2D in controlling and shaping tumor formation

    Cutting Edge: TRAIL Deficiency Accelerates Hematological Malignancies

    Get PDF
    Abstract TNF apoptosis-inducing ligand is attracting considerable interest as a potential extrinsic tumor suppressor mechanism, although previous reports have conveyed somewhat contrasting views regarding the likely importance of this pathway. In this study, we provide the first evaluation of spontaneous tumor formation over the life span of TRAIL-deficient mice. Interestingly, >25% of these mice do develop lymphoid malignancies after 500 days of life. TRAIL suppressed the initiation and development of both tumors of lymphoid and stromal origin in the context of the loss of at least one p53 allele. Specific examination of the role of TRAIL in Her2/neu oncogene-driven mammary epithelial cancer revealed no critical role for TRAIL despite the inherent TRAIL sensitivity of such mammary carcinomas. Overall, the data indicate an important function of TRAIL in controlling carcinogenesis, but suggest that further examination of this pathway in epithelial malignancies is warranted

    Host perforin reduces tumor number but does not increase survival in oncogene-driven mammary adenocarcinoma

    No full text
    The concept of tumor immune surveillance has been supported by several recent studies in mice which show that immune effector mechanisms suppress hematologic malignancy. However, because the most common forms of human cancer are epithelial in origin, and comparatively very little data supports the immune surveillance of epithelial malignancies, we have chosen to evaluate the role of perforin-mediated cytotoxicity in the prevention of BALB/c Her2/neu-induced mammary cancer. Interestingly, perforin significantly delayed the onset of mammary tumorigenesis and reduced the number of mammary tumors without improving survival. Natural killer cell, but not CD8 T cell, depletion resulted in a similar phenotype to perforin deficiency in this regard. Histologic analysis further indicated that the effect of perforin was most evident during the earliest stages of carcinogenesis rather than prior to or during the hyperplastic phase. This data suggests that perforin may mediate some suppression of epithelial carcinogenesis by intervening early in the tumor development process

    Image_1_Xrcc5/KU80 is not required for the survival or activation of prophase-arrested oocytes in primordial follicles.tif

    No full text
    IntroductionThe non-growing, meiotically-arrested oocytes housed within primordial follicles are exquisitely sensitive to genotoxic insults from endogenous and exogenous sources. Even a single DNA double-strand break (DSB) can trigger oocyte apoptosis, which can lead to accelerated depletion of the ovarian reserve, early loss of fertility and menopause. Therefore, repair of DNA damage is important for preserving the quality of oocytes to sustain fertility across the reproductive lifespan. This study aimed to evaluate the role of KU80 (encoded by the XRCC5 gene) – an essential component of the non-homologous end joining (NHEJ) pathway – in the repair of oocyte DNA DSBs during reproductive ageing, and following insult caused by the DNA-damaging chemotherapies cyclophosphamide and cisplatin.MethodsTo investigate the importance of KU80 following endogenous and exogenous DNA damage, ovaries from conditional oocyte-specific Xrcc5 knockout (Xrcc5 cKO) and wildtype (WT) mice that were aged or exposed to DNA damage-inducing chemotherapy were compared. Ovarian follicles and oocytes were quantified, morphologically assessed and analysed via immunohistochemistry for markers of DNA damage and apoptosis. In addition, chemotherapy exposed mice were superovulated, and the numbers and quality of mature metaphase- II (MII) oocytes were assessed.ResultsThe number of healthy follicles, atretic (dying) follicles, and corpora lutea were similar in Xrcc5 cKO and WT mice at PN50, PN200 and PN300. Additionally, primordial follicle number and ovulation rates were similar in young adult Xrcc5 cKO and WT mice following treatment with cyclophosphamide (75mg/kg), cisplatin (4mg/kg), or vehicle control (saline). Furthermore, KU80 was not essential for the repair of exogenously induced DNA damage in primordial follicle oocytes.DiscussionThese data indicate that KU80 is not required for maintenance of the ovarian reserve, follicle development, or ovulation during maternal ageing. Similarly, this study also indicates that KU80 is not required for the repair of exogenously induced DSBs in the prophase-arrested oocytes of primordial follicles. </p

    Type I IFN contributes to NK cell homeostasis, activation, and antitumor function

    No full text
    This study demonstrates that type I IFNs are an early and critical regulator of NK cell numbers, activation, and antitumor activity. Using both IFNAR1- and IFNAR2-deficient mice, as well as an IFNAR1-blocking Ab, we demonstrate that endogenous type I IFN is critical for controlling NK cell-mediated antitumor responses in many experimental tumor models, including protection from methylcholanthrene-induced sarcomas, resistance to the NK cell-sensitive RMA-S tumor and cytokine immunotherapy of lung metastases. Protection from RMA-S afforded by endogenous type I IFN is more potent than that of other effector molecules such as IFN-γ, IL-12, IL-18, and perforin. Furthermore, cytokine immunotherapy using IL-12, IL-18, or IL-21 was effective in the absence of endogenous type I IFN, however the antimetastatic activity of IL-2 was abrogated in IFNAR-deficient mice, primarily due to a defect in IL-2-induced cytotoxic activity. This study demonstrates that endogenous type I IFN is a central mediator of NK cell antitumor responses

    Adaptive immunity maintains occult cancer in an equilibrium state

    No full text
    The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods
    corecore