13 research outputs found

    Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core

    Get PDF
    Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales spanning millennia, and are thus use- ful to examine the role of fire in the carbon cycle and climate system. Here we use the specific biomarker levo- glucosan together with black carbon and ammonium concen- trations from the North Greenland Eemian (NEEM) ice cores ◦◦ (77.49 N, 51.2 W; 2480ma.s.l) over the past 2000 years to infer changes in boreal fire activity. Increases in boreal fire activity over the periods 1000–1300 CE and decreases during 700–900 CE coincide with high-latitude NH temper- ature changes. Levoglucosan concentrations in the NEEM ice cores peak between 1500 and 1700 CE, and most levo- glucosan spikes coincide with the most extensive central and northern Asian droughts of the past millennium. Many of these multi-annual droughts are caused by Asian mon- soon failures, thus suggesting a connection between low- and high-latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative prox- imity to the Greenland Ice Cap. During major fire events, however, isotopic analyses of dust, back trajectories and links with levoglucosan peaks and regional drought reconstruc- tions suggest that Siberia is also an important source of py- rogenic aerosols to Greenland

    Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum

    Get PDF
    In 2011 four ice cores were extracted from the summit of Alto dell'Ortles (3859 m), the highest glacier of South Tyrol in the Italian Alps. This drilling site is located only 37 km southwest from where the Tyrolean Iceman, similar to 5.3 kyrs old, was discovered emerging from the ablating ice field of Tisenjoch (3210 m, near the Italian-Austrian border) in 1991. The excellent preservation of this mummy suggested that the Tyrolean Iceman was continuously embedded in prehistoric ice and that additional ancient ice was likely preserved elsewhere in South Tyrol. Dating of the ice cores from Alto dell'Ortles based on Pb-210, tritium, beta activity and C-14 determinations, combined with an empirical model (COPRA), provides evidence for a chronologically ordered ice stratigraphy from the modern glacier surface down to the bottom ice layers with an age of similar to 7 kyrs, which confirms the hypothesis. Our results indicate that the drilling site has continuously been glaciated on frozen bedrock since similar to 7 kyrs BP. Absence of older ice on the highest glacier of South Tyrol is consistent with the removal of basal ice from bedrock during the Northern Hemisphere Climatic Optimum (6-9 kyrs BP), the warmest interval in the European Alps during the Holocene. Borehole inclinometric measurements of the current glacier flow combined with surface ground penetration radar (GPR) measurements indicate that, due to the sustained atmospheric warming since the 1980s, an acceleration of the glacier Alto dell'Ortles flow has just recently begun. Given the stratigraphic-chronological continuity of the Mt. Ortles cores over millennia, it can be argued that this behaviour has been unprecedented at this location since the Northern Hemisphere Climatic Optimum

    Acque e opportunità per la residenza

    No full text
    Il capitolo XII del libro si occupa di come storicamente, attualmente e in prospettiva, l'uomo, nel mondo e anche nel nord est italiano, abbia abitato e possa abitare sulle acque, con residenze flottanti e su palafitte. Il contributo ipotizza borghi di case flottanti e su palafitte dimostrando che nel mondo ciò avviene regolarmente. In particolare ci si pone il problema urbanistico in Italia dal punto di vista degli edifici non immobili, delle competenze istituzionali, dei servizi a rete, del paesaggio urbano, del consumo di suolo e della città dispersa, del turismo e dei canali navigabili

    Two thousand years of boreal biomass burning recorded in the Neem ice cores

    No full text
    New data from Greenland ice cores reveal a major peak in boreal biomass burning during the 1600s AD, presumably related to major regional droughts in Central Asia. This climate-related peak in fire activity is greater even than postindustrial biomass burning

    Molecular Markers of Biomass Burning in Arctic Aerosols

    No full text
    Biomass burning is one of the most important sources of organic matter in the atmosphere as it affects the absorption and scattering of solar radiation, creates cloud condensation nuclei and possibly influences ice and snow albedo. Here we created and validated an analytical method using HPLC/(−)-ESI-MS/MS to determine phenolic compounds (PCLCs): vanillic acid, isovanillic acid, homovanillic acid, syringic acid, syringaldehyde, ferulic acid, <i>p</i>-coumaric acid, and coniferyl aldehyde at trace levels in particulate matter. We analyzed eighteen high-volume air samples from Ny Ålesund (Svalbard) collected during the boreal spring and summer of 2010. Biomass burning molecules including PCLCs (<0.49 μm, mean atmospheric concentration 6 pg m<sup>–3</sup>), levoglucosan (0.004 to 0.682 ng m<sup>–3</sup>) and acrylamide (32 fg m<sup>–3</sup> to 166 fg m<sup>–3</sup>) were present in the sampled aerosols. Levoglucosan concentrations, an unambiguous cellulose combustion tracer, derived from 2010 Russian fires. PCLCs levels in the Ny Alesund atmosphere in different size fractions reflected both long-range transport linked to biomass burning and a terrigenous local source
    corecore