50 research outputs found

    High order Fuchsian equations for the square lattice Ising model: χ(6)\chi^{(6)}

    Full text link
    This paper deals with χ~(6)\tilde{\chi}^{(6)}, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for χ~(6)\tilde{\chi}^{(6)}. The length of the series is sufficient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the "depleted" series Φ(6)=χ~(6)23χ~(4)+245χ~(2)\Phi^{(6)}=\tilde{\chi}^{(6)} - {2 \over 3} \tilde{\chi}^{(4)} + {2 \over 45} \tilde{\chi}^{(2)}. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The "depleted" differential operator is shown to have a structure similar to the corresponding operator for χ~(5)\tilde{\chi}^{(5)}. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral EE. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page

    The diagonal Ising susceptibility

    Full text link
    We use the recently derived form factor expansions of the diagonal two-point correlation function of the square Ising model to study the susceptibility for a magnetic field applied only to one diagonal of the lattice, for the isotropic Ising model. We exactly evaluate the one and two particle contributions χd(1)\chi_{d}^{(1)} and χd(2)\chi_{d}^{(2)} of the corresponding susceptibility, and obtain linear differential equations for the three and four particle contributions, as well as the five particle contribution χd(5)(t){\chi}^{(5)}_d(t), but only modulo a given prime. We use these exact linear differential equations to show that, not only the russian-doll structure, but also the direct sum structure on the linear differential operators for the n n-particle contributions χd(n)\chi_{d}^{(n)} are quite directly inherited from the direct sum structure on the form factors f(n) f^{(n)}. We show that the nth n^{th} particle contributions χd(n)\chi_{d}^{(n)} have their singularities at roots of unity. These singularities become dense on the unit circle sinh2Ev/kTsinh2Eh/kT=1|\sinh2E_v/kT \sinh 2E_h/kT|=1 as n n\to \infty.Comment: 18 page

    Experimental mathematics on the magnetic susceptibility of the square lattice Ising model

    Full text link
    We calculate very long low- and high-temperature series for the susceptibility χ\chi of the square lattice Ising model as well as very long series for the five-particle contribution χ(5)\chi^{(5)} and six-particle contribution χ(6)\chi^{(6)}. These calculations have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150000 CPU hours on computer clusters. For χ(5)\chi^{(5)} 10000 terms of the series are calculated {\it modulo} a single prime, and have been used to find the linear ODE satisfied by χ(5)\chi^{(5)} {\it modulo} a prime. A diff-Pad\'e analysis of 2000 terms series for χ(5)\chi^{(5)} and χ(6)\chi^{(6)} confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the nn-particle components of the susceptibility, up to a small set of ``additional'' singularities. We find the presence of singularities at w=1/2w=1/2 for the linear ODE of χ(5)\chi^{(5)}, and w2=1/8w^2= 1/8 for the ODE of χ(6)\chi^{(6)}, which are {\it not} singularities of the ``physical'' χ(5)\chi^{(5)} and χ(6),\chi^{(6)}, that is to say the series-solutions of the ODE's which are analytic at w=0w =0. Furthermore, analysis of the long series for χ(5)\chi^{(5)} (and χ(6)\chi^{(6)}) combined with the corresponding long series for the full susceptibility χ\chi yields previously conjectured singularities in some χ(n)\chi^{(n)}, n7n \ge 7. We also present a mechanism of resummation of the logarithmic singularities of the χ(n)\chi^{(n)} leading to the known power-law critical behaviour occurring in the full χ\chi, and perform a power spectrum analysis giving strong arguments in favor of the existence of a natural boundary for the full susceptibility χ\chi.Comment: 54 pages, 2 figure

    The Ising model and Special Geometries

    Full text link
    We show that the globally nilpotent G-operators corresponding to the factors of the linear differential operators annihilating the multifold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model (n6n \le 6) are homomorphic to their adjoint. This property of being self-adjoint up to operator homomorphisms, is equivalent to the fact that their symmetric square, or their exterior square, have rational solutions. The differential Galois groups are in the special orthogonal, or symplectic, groups. This self-adjoint (up to operator equivalence) property means that the factor operators we already know to be Derived from Geometry, are special globally nilpotent operators: they correspond to "Special Geometries". Beyond the small order factor operators (occurring in the linear differential operators associated with χ(5) \chi^{(5)} and χ(6) \chi^{(6)}), and, in particular, those associated with modular forms, we focus on the quite large order-twelve and order-23 operators. We show that the order-twelve operator has an exterior square which annihilates a rational solution. Then, its differential Galois group is in the symplectic group Sp(12,C) Sp(12, \mathbb{C}). The order-23 operator is shown to factorize in an order-two operator and an order-21 operator. The symmetric square of this order-21 operator has a rational solution. Its differential Galois group is, thus, in the orthogonal group SO(21,C) SO(21, \mathbb{C}).Comment: 33 page

    Difference system for Selberg correlation integrals

    Full text link
    The Selberg correlation integrals are averages of the products s=1ml=1n(xszl)μs\prod_{s=1}^m\prod_{l=1}^n (x_s - z_l)^{\mu_s} with respect to the Selberg density. Our interest is in the case m=1m=1, μ1=μ\mu_1 = \mu, when this corresponds to the μ\mu-th moment of the corresponding characteristic polynomial. We give the explicit form of a (n+1)×(n+1)(n+1) \times (n+1) matrix linear difference system in the variable μ\mu which determines the average, and we give the Gauss decomposition of the corresponding (n+1)×(n+1)(n+1) \times (n+1) matrix. For μ\mu a positive integer the difference system can be used to efficiently compute the power series defined by this average.Comment: 21 page

    Globally nilpotent differential operators and the square Ising model

    Full text link
    We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution χ(3) \chi^{(3)} of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or \infty) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.Comment: 55 page

    Painleve versus Fuchs

    Full text link
    The sigma form of the Painlev{\'e} VI equation contains four arbitrary parameters and generically the solutions can be said to be genuinely ``nonlinear'' because they do not satisfy linear differential equations of finite order. However, when there are certain restrictions on the four parameters there exist one parameter families of solutions which do satisfy (Fuchsian) differential equations of finite order. We here study this phenomena of Fuchsian solutions to the Painlev{\'e} equation with a focus on the particular PVI equation which is satisfied by the diagonal correlation function C(N,N) of the Ising model. We obtain Fuchsian equations of order N+1N+1 for C(N,N) and show that the equation for C(N,N) is equivalent to the NthN^{th} symmetric power of the equation for the elliptic integral EE. We show that these Fuchsian equations correspond to rational algebraic curves with an additional Riccati structure and we show that the Malmquist Hamiltonian p,qp,q variables are rational functions in complete elliptic integrals. Fuchsian equations for off diagonal correlations C(N,M)C(N,M) are given which extend our considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    Renormalization, isogenies and rational symmetries of differential equations

    Full text link
    We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.Comment: 36 page

    Singularities of nn-fold integrals of the Ising class and the theory of elliptic curves

    Full text link
    We introduce some multiple integrals that are expected to have the same singularities as the singularities of the n n-particle contributions χ(n)\chi^{(n)} to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equation satisfied by these multiple integrals for n=1,2,3,4 n=1, 2, 3, 4 and only modulo some primes for n=5 n=5 and 6 6, thus providing a large set of (possible) new singularities of the χ(n)\chi^{(n)}. We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to n=6n= 6) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a {\em finite number of one dimensional integrals}. Among the singularities found, we underline the fact that the quadratic polynomial condition 1+3w+4w2=0 1+3 w +4 w^2 = 0, that occurs in the linear differential equation of χ(3) \chi^{(3)}, actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves.Comment: 39 pages, 7 figure

    Beyond series expansions: mathematical structures for the susceptibility of the square lattice Ising model

    Full text link
    We first study the properties of the Fuchsian ordinary differential equations for the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)} of the square lattice Ising model susceptibility. An analysis of some mathematical properties of these Fuchsian differential equations is sketched. For instance, we study the factorization properties of the corresponding linear differential operators, and consider the singularities of the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, versus the singularities of the associated Fuchsian ordinary differential equations, which actually exhibit new ``Landau-like'' singularities. We sketch the analysis of the corresponding differential Galois groups. In particular we provide a simple, but efficient, method to calculate the so-called ``connection matrices'' (between two neighboring singularities) and deduce the singular behaviors of χ(3) \chi^{(3)} and χ(4) \chi^{(4)}. We provide a set of comments and speculations on the Fuchsian ordinary differential equations associated with the n n-particle contributions χ(n) \chi^{(n)} and address the problem of the apparent discrepancy between such a holonomic approach and some scaling results deduced from a Painlev\'e oriented approach.Comment: 21 pages Proceedings of the Counting Complexity conferenc
    corecore