631 research outputs found

    A new model for heating of Solar North Polar Coronal Hole

    Full text link
    This paper presents a new model of North Polar Coronal Hole (NPCH) to study dissipation/propagation of MHD waves. We investigate the effects of the isotropic viscosity and heat conduction on the propagation characteristics of the MHD waves in NPCH. We first model NPCH by considering the differences in radial as well as in the direction perpendicular to the line of sight (\textit{los}) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes for the specific case of \ion{O}{VI} ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for the MHD waves in the case of absence and presence of parallel heat conduction. In the case of absence of parallel heat conduction, we find that MHD wave dissipation strongly depends on the viscosity for modified acoustic and Alfven waves. The energy flux density of acoustic waves varies between 104.710^{4.7} and 107 erg cm−2 s−110^7 \,erg\,cm^{-2}\,s^{-1} while the energy flux density of Alfven waves turned out to be between 106−108.6 erg cm−2 s−1 10^6-10^{8.6} \,erg\,cm^{-2}\,s^{-1}. But, solutions of the magnetoacustic waves show that the parallel heat conduction introduce anomalous dispersion to the NPCH plasma wherein the group velocity of waves exceeds the speed of light in vacuum. Our results suggests all these waves may provide significant source for the observed preferential accelerating and heating of \ion{O}{VI} ions, in turn coronal plasma heating and an extra accelerating agent for fast solar wind in NPCH.Comment: 17 pages, 11 figures, Submitted to MNRA

    Spatially Selective Assembly of Quantum Dot Light Emitters in an LED Using Engineered Peptides

    Get PDF
    Cataloged from PDF version of article.Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection. © 2011 American Chemical Society

    Anticancer and anti-inflammatory effects of tomentosin: Cellular and molecular mechanisms

    Get PDF
    Tomentosin is a natural compound known for its presence in some medicinal plants of the Asteraceae family such as Inula viscosa. Recent studies have highlighted its anticancer and anti-inflammatory properties. Its anticancer mechanisms are unique and act at different levels ranging from cellular organization to molecular transcriptional factors and epigenetic modifications. Tomentosin’s possession of the modulatory effect on telomerase expression on tumor cell lines has captured the interest of researchers and spurred a more robust study on its anticancer effect. Since inflammation has a close link with cancer disease, this natural compound appears to be a potential cancer-fighting drug. Indeed, its recently demonstrated anti-inflammatory action can be considered as a starting point for its evaluation as an anticancer chemo-preventive agent

    An Integrated NMR, LC-DAD-MS, LC-QTOF Metabolomic Characterization of Sartoria hedysaroides: Correlation of Antioxidant and Enzyme Inhibitory Activity with Chemical Composition by Multivariate Data Analysis

    Get PDF
    Sartoria hedysaroides Boiss and Heldr. (Fabaceae) is an endemic plant of Turkey that has received little scientific consideration so far. In the present study, the chemical profiles of extracts from the aerial part and roots of S. hedysaroides obtained using solvents with different polarities were analyzed combining integrated NMR, LC-DAD-MSn, and LC-QTOF methods. In vitro antioxidant and enzyme inhibitory activities were evaluated, and the results were combined with chemical data using multivariate approaches. Phenolic acids, flavonoids, ellagitannins, and coumarins were identified and quantified in the extracts of aerial part and roots. Methanolic extract of S. hedysaroides aerial part showed the highest phenolic content and the highest antioxidant activity and cupric ion reducing antioxidant capacity. Dichloromethane extract of S. hedysaroides roots showed the highest inhibition of butyryl cholinesterase, while methanolic extract of S. hedysaroides aerial part was the most active tyrosinase inhibitor. Multivariate data analysis allowed us to observe a good correlation between phenolic compounds, especially caffeoylquinic derivatives and flavonoids and the antioxidant activity of extracts. Acetylcholinesterase inhibition was correlated with the presence of caffeoylquinic acids and coumarins. Overall, the present study appraised the biological potential of understudied S. hedysaroides, and provided a comprehensive approach combining metabolomic characterization of plant material and multivariate data analysis for the correlation of chemical data with results from multi-target biological assays

    Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: pharmacokinetic properties and biological activity

    Get PDF
    The aim of this work is to investigate the pharmacokinetic properties, antinociceptive and antioxidant activities of rubiscolin-6, soymorphin-6 and their C-terminal amides; The four peptides were synthesized following Fmoc-SPPS strategy to give the final peptides in excellent overall yields and purity following analytical RP-HPLC analysis. None of them shows antioxidant activity and α-tyrosinase inhibition in vitro. All compounds are able to activate G-protein coupled receptor at the Ύ-opioid receptor (DOR) at 100 ΌM concentration however, rubiscolin-6-amide exhibits significative antinociceptive effect after i.c.v. administration in the tail flick test (TF) and s.c. administration in the formalin test (FT). Rubiscolin-6 shows the best in vitro intestinal bioavailability in CaCo2 cell monolayer and stability to the brush border exopeptidases in the apical compartment. In silico experiments show the interaction of rubiscolin-6 and rubiscolin-6 amide at the binding cavity of DOR compared with the crystallographic ligand TIPP-NH2

    Exploring for HPLC-MS/MS profiles and biological activities of different extracts from Allium lycaonicum Siehe ex Hayek from Turkey flora

    Get PDF
    The present study was designed to determine the phenolic constituents, antioxidant, and enzyme inhibition activities of aerial parts and bulbs of Allium lycaonicum (family Amaryllidaceae). Extracts were prepared by maceration and Soxhlet/infusion using hexane, methanol, and water as extraction solvents. Generally, extracts from the aerial parts showed higher total phenolic and individual components and antioxidant activity than their respective bulb extracts. Maceration with water was the best to extract total phenolic content from the aerial parts (29.00 mg gallic acid equivalents (GAE)/g), while the Soxhlet extraction with hexane (22.29 mg GAE/g) was the best for the bulb. Maceration with methanol recovered the highest total flavonoid content from both the aerial parts (41.95 mg (rutin equivalents (RE)/g) and bulb (1.83 mg RE/g). Polar extracts of aerial parts were characterized by higher abundance of kaempferol-3-glucoside (≀20,624.27 ÎŒg/mg), hyperoside (≀19,722.76 ÎŒg/g), isoquercitrin (≀17,270.70 ÎŒg/g), delphindin-3,5-diglucoside (≀14,625.21 ÎŒg/g), and rutin (≀10,901.61 ÎŒg/g) than the bulb. Aerial parts’ aqueous extract, prepared by maceration, exerted the highest anti-ABTS (2,2â€Č-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical activity (64.09 mg trolox equivalents (TE)/g), Cu++ (83.03 mg TE/g) and Fe+++ (63.03 mg TE/g) reducing capacity while that prepared by infusion recorded the highest anti-DPPH (2,2-diphenyl-1-picrylhydrazyl) radical (31.70 mg TE/g) and metal chelating (27.66 mg EDTAE/g) activities. The highest total antioxidant activity (1.46 mmol TE/g) was obtained by maceration of the bulb with water. Extracts obtained by organic solvents showed remarkable enzyme inhibition properties against the tested enzymes. Soxhlet extraction of the bulb with hexane and methanol recorded the highest acetylcholinesterase inhibition (4.75 mg galanthamine equivalents (GALAE)/g) and tyrosinase inhibition (139.95 mg kojic acid equivalents/g) activities, respectively. Extracts obtained by maceration of the bulb with methanol and the aerial parts with hexane exerted the highest glucosidase inhibition (3.25 mmol acarbose equivalents/g) and butyrylcholinesterase inhibition (20.99 mg GALAE/g) activities, respectively. These data indicated that A. lycaonicum is a source of bioactive molecules with potential antioxidant and enzyme inhibition properties. Nonetheless, the extracts obtained through various solvents and extraction techniques showed variations in their phytoconstituent composition and biological properties

    Phytochemical profile and biological activities of crude and purified Leonurus cardiaca extracts

    Get PDF
    Leonurus cardiaca L. (Lamiaceae) is a perennial herb distributed in Asia and Southeastern Europe and has been used in traditional medicine since antiquity for its role against cardiac and gynecological disorders. The polar extracts obtained from L. cardiaca aerial parts contain several compounds among which alkaloids, iridoids, labdane diterpenes, and phenylethanoid glycosides play a major role in conferring protection against the aforementioned diseases. On the other hand, the antioxidant activities and the enzyme inhibitory properties of these extracts have not yet been deeply studied. On the above, in the present study, crude and purified extracts were prepared from the aerial parts of L. cardiaca and have been chemically characterized by spectrophotometric assays and HPLC-DAD-MS analyses. Notably, the content of twelve secondary metabolites, namely phenolic acids (chlorogenic, caffeic, caffeoylmalic and trans-ferulic acids), flavonoids (rutin and quercetin), phenylethanoid glycosides (verbascoside and lavandulifolioside), guanidine pseudoalkaloids (leonurine), iridoids (harpagide), diterpenes (forskolin), and triterpenes (ursolic acid), has been determined. Furthermore, the extracts were tested for their antioxidant capabilities (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and ferrous chelating assays) and enzyme inhibitory properties against cholinesterase, tyrosinase, amylase, and glucosidase. The purified extracts contained higher phytochemical content than the crude ones, with caffeoylmalic acid and verbascoside as the most abundant compounds. A linear correlation between total phenolics, radical scavenging activity, and reducing power of extracts has been found. Notably, quercetin, caffeic acid, lavandulifolioside, verbascoside, chlorogenic acid, rutin, and ursolic acid influenced the main variations in the bioactivities found in L. cardiaca extracts. Our findings provide further insights into the chemico-biological traits of L. cardiaca and a scientific basis for the development of nutraceuticals and food supplements

    Performance of various homogenization tools on a synthetic benchmark dataset of GPS and ERA-interim IWV differences

    Get PDF
    PresentaciĂłn realizada en: IAG-IASPEI 39th Joint Scientific Assembly celebrada en Kobe, JapĂłn, del 30 de julio al 4 de agosto de 2017

    Study on homogenization of synthetic GNSS-Retrieved IWV time series and its impact on trend estimates with autoregressive noise

    Get PDF
    Póster presentado en: EGU General Assembly celebrada del 23 al 28 de abril de 2017 en Viena, Austria.A synthetic benchmark dataset of Integrated Water Vapour (IWV) was created within the activity of “Data homogenisation” of sub-working group WG3 of COST ES1206 Action. The benchmark dataset was created basing on the analysis of IWV differences retrieved by Global Positioning System (GPS) International GNSS Service (IGS) stations using European Centre for Medium-Range Weather Forecats (ECMWF) reanalysis data (ERA-Interim). Having analysed a set of 120 series of IWV differences (ERAI-GPS) derived for IGS stations, we delivered parameters of a number of gaps and breaks for every certain station. Moreover, we estimated values of trends, significant seasonalities and character of residuals when deterministic model was removed. We tested five different noise models and found that a combination of white and autoregressive processes of first order describes the stochastic part with a good accuracy. Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different types of noise: white as well as combination of white and autoregressive processes. We also added few strictly defined offsets, creating three variants of synthetic dataset: easy, less complicated and fully complicated. The synthetic dataset we present was used as a benchmark to test various statistical tools in terms of homogenisation task. In this research, we assess the impact of the noise model, trend and gaps on the performance of statistical methods to detect simulated change points
    • 

    corecore