25 research outputs found

    An evaluation of the current extent and potential spread of Black Bass invasions in South Africa

    Get PDF
    Black Bass, a collective name for members of the centrarchid genus Micropterus, are native to North America, but have been introduced globally to enhance recreational angling. This study assessed the distribution of Micropterus salmoides, M. dolomieu and M. punctulatus in South Africa using both formal (survey-based) and informal (tournament data and social media) information sources. Analysis of the distribution data showed habitat bias between the data sources. Survey data from formal information sources were dominated by locality records in riverine environments while those derived from informal information sources focused more on lacustrine habitats. Presence data were used to develop niche models to identify suitable areas for their establishment. The predicted distribution range of M. salmoides revealed a broad suitability over most of South Africa, however, the Cape Fold Ecoregion and all coastal regions were most suitable for the establishment for both M. dolomieu and M. punctulatus. Flow accumulation and precipitation of coldest quarter were the most important environmental variables associated with the presence of all Black Bass species in South Africa. In addition, anthropogenic disturbance such as agricultural activities were associated with the presence of both Smallmouth Bass and Spotted Bass. An extensive area-based invasion debt was observed for all Micropterus spp. The potential for further spread of Black Bass in South Africa is of ecological concern because of their impact on native biota

    A four‐component classification of uncertainties in biological invasions: implications for management

    Get PDF
    Although uncertainty is an integral part of any science, it raises doubts in public perception about scientific evidence, is exploited by denialists, and therefore potentially hinders the implementation of management actions. As a relatively young field of study, invasion science contains many uncertainties. This may explain why, despite international policies aimed at mitigating biological invasions, the implementation of national- and regional-scale measures to prevent or control alien species has done little to slow the increase in extent of invasions and the magnitude of impacts. Uncertainty is therefore a critical aspect of invasion science that should be addressed to enable the field to progress further. To improve how uncertainties in invasion science are captured and characterized, we propose a framework, which is also applicable to other applied research fields such as climate and conservation science, divided into four components: the need (1) to clearly circumscribe the phenomenon, (2) to measure and provide evidence for the phenomenon (i.e., confirmation), (3) to understand the mechanisms that cause the phenomenon, and (4) to understand the mechanisms through which the phenomenon results in consequences. We link these issues to three major types of uncertainty: linguistic, psychological, and epistemic. The application of this framework shows that the four components tend to be characterized by different types of uncertainty in invasion science.We explain how these uncertainties can be detrimental to the implementation of management measures and propose ways to reduce them. Since biological invasions are increasingly tightly embedded in complex socio-ecological systems, many problems associated with these uncertainties have convoluted solutions. They demand the consensus of many stakeholders to define and frame the dimensions of the phenomenon, and to decide on appropriate actions. While many of the uncertainties cannot be eliminated completely, we believe that using this framework to explicitly identify and communicate them will help to improve collaboration between researchers and managers, increase scientific, political, and public support for invasion research, and provide a stronger foundation for sustainable management strategies

    How the freshwater biodiversity information system (FBIS) is supporting national freshwater fish conservation decisions in South Africa

    Get PDF
    DATA AVAILABILITY STATEMENT : The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material. Alternatively, the dataset can be accessed via the Freshwater Biodiversity Information System (freshwaterbiodiversity.org).In South Africa, anthropogenic pressures such as water over-abstraction, invasive species impacts, land-use change, pollution, and climate change have caused widespread deterioration of the health of river ecosystems. This comes at great cost to both people and biodiversity, with freshwater fishes ranked as the country’s most threatened species group. Effective conservation and management of South Africa’s freshwater ecosystems requires access to reliable and comprehensive biodiversity data. Despite the existence of a wealth of freshwater biodiversity data, access to these data has been limited. The Freshwater Biodiversity Information System (FBIS) was built to address this knowledge gap by developing an intuitive, accessible and reliable platform for freshwater biodiversity data in South Africa. The FBIS hosts high quality, high accuracy biodiversity data that are freely available to a wide range of stakeholders, including researchers, conservation practitioners and policymakers. We describe how the system is being used to provide freshwater fish data to a national conservation decision-support tool—The Department of Forestry, Fisheries, and the Environment (DFFE) National Environmental Screening Tool (NEST). The NEST uses empirical and modelled biodiversity data to guide Environmental Impact Assessment Practitioners in conducting environmental assessments of proposed developments. Occurrence records for 34 threatened freshwater fishes occurring in South Africa were extracted from the FBIS and verified by taxon specialists, resulting in 6 660 records being used to generate modelled and empirical national distribution (or sensitivity) layers. This represents the first inclusion of freshwater biodiversity data in the NEST, and future iterations of the tool will incorporate additional freshwater taxa. This case study demonstrates how the FBIS fills a pivotal role in the data-to-decision pipeline through supporting data-driven conservation and management decisions at a national level.Funding for the development of the Freshwater Biodiversity Information System (FBIS) was provided by the JRS Biodiversity Foundation Funding for the development of the Freshwater Biodiversity Information System (FBIS) was provided by the JRS Biodiversity Foundation. This work is based on the research supported in part by the National Research Foundation (NRF) of South Africa and the NRF-SAIAB DSI/ NRF Research Chair in Inland Fisheries and Freshwater Ecology.http://www.frontiersin.org/Environmental_Scienceam2024Zoology and EntomologySDG-14:Life below wate

    Widespread colonisation of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction

    Get PDF
    From the 1950s onwards, programmes to promote aquaculture and improve capture fisheries in East Africa have relied heavily on the promise held by introduced species. In Tanzania these introductions have been poorly documented. Here we report the findings of surveys of inland water bodies across Tanzania between 2011 and 2017 that clarify distributions of tilapiine cichlids of the genus Oreochromis. We identified Oreochromis from 123 sampling locations, including 14 taxa restricted to their native range and three species that have established populations beyond their native range. Of these three species, the only exotic species found was blue-spotted tilapia (Oreochromis leucostictus), while Nile tilapia (Oreochromis niloticus) and Singida tilapia (Oreochromis esculentus), which are both naturally found within the country of Tanzania, have been translocated beyond their native range. Using our records, we developed models of suitable habitat for the introduced species based on recent (1960–1990) and projected (2050, 2070) East African climate. These models indicated that presence of suitable habitat for these introduced species will persist and potentially expand across the region. The clarification of distributions provided here can help inform the monitoring and management of biodiversity, and inform policy related to the future role of introduced species in fisheries and aquaculture

    The Social Dimensions of Biological Invasions in South Africa

    Get PDF
    Thischapterexaminescurrentknowledgerelatingtothehumanandsocial dimensions of biological invasions in South Africa. We do so by advancing 12 propo- sitions and examining the evidence for or against each using South African literature. The propositions cover four broad issues: how people cause invasions; how they conceptualise them; effects of invasive species on people; and peoples’ responses to them. The propositions we assess include: (1) intentional introductions were and continue to reflect the social ethos of the time; (2) people go to great lengths to ensure that newly introduced species establish themselves; (3) human-mediated modifications help invasive species to establish; (4) how people think about and study invasive species is strongly shaped by social-ecological contexts; (5) knowledge and awareness of invasive species is low amongst the general public; (6) personal values are the primary factor affecting perceptions of invasive alien species and their control; (7) specific social-ecological contexts mediate how invasive species affect people; (8) research on social effects of invasive species primarily focuses on negative impacts; (9) the negative social impacts of invasive species on local livelihoods are of more concern to people than impacts on biodiversity; (10) people are less willing to manage species regarded as ‘charismatic’; (11) social heterogeneity increases conflicts around the management of biological invasions; and (12) engagement with society is key to successful manage- ment. By advancing and questioning propositions, we were able to determine what is known, provide evidence for where gaps lie, and thus identify areas for future research

    The role of environmental factors in promoting and limiting biological invasions in South Africa

    Get PDF
    CITATION: Wilson, J.R. et al. 2020. The role of environmental factors in promoting and limiting biological invasions in South Africa. In: Biological Invasions in South Africa. van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R. and Zengeya, T.A. (eds.). Springer, Cham. pp. 355-385. doi:10.1007/978-3-030-32394-3_13The original publication is available at https://link.springer.com/book/10.1007/978-3-030-32394-3This chapter provides an overview of the researchers and research initiatives relevant to invasion science in South Africa over the past 130 years, profiling some of the more recent personalities, particularly those who are today regarded as international leaders in the field. A number of key points arise from this review. Since 1913, South Africa has been one of a few countries that have investigated and implemented alien plant biological control on a large scale, and is regarded as a leader in this field. South Africa was also prominent in the conceptualisation and execution of the international SCOPE project on the ecology of biological invasions in the 1980s, during which South African scientists established themselves as valuable contributors to the field. The development of invasion science benefitted from a deliberate strategy to promote multi-organisational, interdisciplinary research in the 1980s. Since 1995, the Working for Water programme has provided funding for research and a host of practical questions that required research solutions. Finally, the establishment of a national centre of excellence with a focus on biological invasions has made a considerable contribution to building human capacity in the field, resulting in advances in all aspects of invasion science—primarily in terms of biology and ecology, but also in history, sociology, economics and management. South Africa has punched well above its weight in developing the field of invasion science, possibly because of the remarkable biodiversity that provided a rich template on which to carry out research, and a small, well-connected research community that was encouraged to operate in a collaborative manner.https://link.springer.com/chapter/10.1007%2F978-3-030-32394-3_13Publisher’s versio

    Biological Invasions in South Africa's Urban Ecosystems: Patterns, Processes, Impacts and Management

    Get PDF
    This chapter provides an overview of the researchers and research initiatives relevant to invasion science in South Africa over the past 130 years, profiling some of the more recent personalities, particularly those who are today regarded as international leaders in the field. A number of key points arise from this review. Since 1913, South Africa has been one of a few countries that have investigated and implemented alien plant biological control on a large scale, and is regarded as a leader in this field. South Africa was also prominent in the conceptualisation and execution of the international SCOPE project on the ecology of biological invasions in the 1980s, during which South African scientists established themselves as valuable contributors to the field. The development of invasion science benefitted from a deliberate strategy to promote multi-organisational, interdisciplinary research in the 1980s. Since 1995, the Working for Water programme has provided funding for research and a host of practical questions that required research solutions. Finally, the establishment of a national centre of excellence with a focus on biological invasions has made a considerable contribution to building human capacity in the field, resulting in advances in all aspects of invasion science—primarily in terms of biology and ecology, but also in history, sociology, economics and management. South Africa has punched well above its weight in developing the field of invasion science, possibly because of the remarkable biodiversity that provided a rich template on which to carry out research, and a small, well-connected research community that was encouraged to operate in a collaborative manner
    corecore