27 research outputs found

    Procedures for behavioral experiments in head-fixed mice.

    No full text

    Flow of Cortical Activity Underlying a Tactile Decision in Mice

    Get PDF
    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neocortex for regions driving behavior during specific behavioral epochs. Barrel cortex was critical for sensation. During the short-term memory, unilateral inhibition of anterior lateral motor cortex biased responses to the ipsilateral side. Consistently, barrel cortex showed stimulus-specific activity during sensation, whereas motor cortex showed choice-specific preparatory activity and movement-related activity, consistent with roles in motor planning and movement. These results suggest serial information flow from sensory to motor areas during perceptual decision making.Howard Hughes Medical Institut

    Neural coding during active somatosensation revealed using illusory touch

    Get PDF
    Active sensation requires the convergence of external stimuli with representations of body movements. We used mouse behavior, electrophysiology and optogenetics to dissect the temporal interactions between whisker movement, neural activity, and sensation of touch. We photostimulated layer 4 activity in single barrels in closed-loop with whisking. Mimicking touch-related neural activity caused illusory perception of an object at a particular location, but scrambling the timing of spikes over one whisking cycle (tens of milliseconds) did not abolish the illusion, indicating that knowledge of instantaneous whisker position is unnecessary for discriminating object locations. Illusions were induced only during bouts of directed whisking, when mice expected touch, and in the relevant barrel. Reducing activity biased behavior consistent with a spike count code for object detection at a particular location. Our results show that mice integrate coding of touch with movement over timescales of a whisking bout to produce perception of active touch

    Procedures for behavioral experiments in head-fixed mice.

    Get PDF
    The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings

    Key stages in mouse handling.

    No full text
    <p>A. Mouse eating a sunflower seed on the experimenter's hand. The pins emanating from the top of the mouse head correspond to ground and reference electrodes for extracellular recordings. B. Mouse being familiarized with the body tube. C. Mouse receiving a water reward in the body tube.</p

    A lick/no-lick object location discrimination task for head-fixed mice [23].

    No full text
    <p>A. Block-diagram of the possible events in a single trial. B. Schematic representation of event timing during a single lick trial. C. Schematic representation of the behavioral contingency. Mice had to lick for a water reward when the pole was in a posterior position and hold their tongue when the pole was in an anterior position. In some experiments, the contingency of the pole positions was reversed. D. Behavioral data from one session. The abscissa shows the time from trial start. Lick and no-lick trials are randomly interleaved. The pink ticks indicate licks. The red ticks indicate the first licks after the grace period. The blue bars correspond to the open times of the reward water valve. The horizontal green and red bars indicate whether each trial is correct or incorrect, respectively. The dark gray shading indicates that the pole is fully descended and in reach of the whiskers.</p

    Apparatus for head-fixation.

    No full text
    <p>A. Left, two types of titanium head plates. Right, stainless steel head bar holder and clamp (only one of two sides is shown). The head plate is inserted into notches in the holder and fastened with the clamp (right, top) and a thumbscrew (not shown). The simple head bar (left, top) is used when access to large parts of the brain is necessary. The larger head plate (left, middle) provides better stability. The simple head bar was cemented to the skull of the mouse (left, bottom). The head of the mouse (top view) was pointing downward. The skull was outfitted with a clear skull cap <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088678#pone.0088678-Guo1" target="_blank">[7]</a>. The head bar was aligned at the lambda sutures. The red dot indicates the location of bregma. B. Plexiglass body tube used for head-fixed mice. Mice rest their front paws on the front ledge. The bottom of the tube is coated with aluminum foil to produce electrical contact for electric lickports. The aluminum foil is connected to the red banana socket which will be connected to electric lickports for detecting licking events. C. Example caddy used in training apparatus, assembled from standard optomechanical components (Thorlabs). The head bar holder is mounted towards the left. D. A head-fixed mouse in the caddy.</p

    Performance of the lick-left/lick-right object location discrimination task with a delay epoch (data from Figure S1 [7]).

    No full text
    <p>A. Schematic of time-course of experiments. B. Learning curves showing the performance. Thin lines correspond to individual mice. Thick lines, average. Colors correspond to whisker trimming. Vertical dashed line indicates when the delay epoch was introduced. The four mice were from the same litter (2 males and 2 females). Same as Figure S1B in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088678#pone.0088678-Guo1" target="_blank">[7]</a>. C. Learning curves showing the discriminability index, d'. D. Bias: performance of lick-right trials minus performance of lick-left trials. Same as Figure S1C <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088678#pone.0088678-Guo1" target="_blank">[7]</a>. E. The fraction of trials with licking responses during the sample or delay epoch. Same as Figure S1D <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088678#pone.0088678-Guo1" target="_blank">[7]</a>. F. Water consumed. G. Trials per session. H. Health score. A health score larger than 3 (dashed line) triggers more detailed evaluation and possibly water supplements. I. Health score for four mice that were under water restriction for four months. A health score larger than 3 (dashed line) triggers more detailed evaluation and possibly water supplements.</p
    corecore