10,215 research outputs found

    Tetra­aqua­bis[2-(2,4-dichloro­phen­oxy)acetato]nickel(II)

    Get PDF
    In the title complex, [Ni(C8H5Cl2O3)2(H2O)4], the NiII atom (site symmetry ) adopts a slightly distorted NiO6 octa­hedral coordination. An intra­molecular O—H⋯O hydrogen bond helps to establish the conformation. In the crystal, further O—H⋯O hydrogen bonds link the mol­ecules

    Efficient parallel solver for high-speed rarefied gas flow using GSIS

    Full text link
    Recently, the general synthetic iterative scheme (GSIS) has been proposed to find the steady-state solution of the Boltzmann equation in the whole range of gas rarefaction, where its fast-converging and asymptotic-preserving properties lead to the significant reduction of iteration numbers and spatial cells in the near-continuum flow regime. However, the efficiency and accuracy of GSIS has only been demonstrated in two-dimensional problems with small numbers of spatial cell and discrete velocities. Here, a large-scale parallel computing strategy is designed to extend the GSIS to three-dimensional high-speed flow problems. Since the GSIS involves the calculation of the mesoscopic kinetic equation which is defined in six-dimensional phase-space, and the macroscopic high-temperature Navier-Stokes-Fourier equations in three-dimensional physical space, the proper partition of the spatial and velocity spaces, and the allocation of CPU cores to the mesoscopic and macroscopic solvers, are the keys to improving the overall computational efficiency. These factors are systematically tested to achieve optimal performance, up to 100 billion spatial and velocity grids. For hypersonic flows around the Apollo reentry capsule, the X38-like vehicle, and the space station, our parallel solver can get the converged solution within one hour

    Optimized synthesis of ultrahigh-surface-area and oxygen-doped carbon nanobelts for high cycle-stability lithium-sulfur batteries

    Get PDF
    Hierarchical clews of carbon nanobelts (CsCNBs) with ultrahigh specific surface area (2300 m2 g−1) and large pore volume (up to 1.29 cm3 g−1) has been successfully fabricated through carbonization and KOH activation of phenolic resin based nanobelts. The product possesses hierarchically porous structure, three-dimensional conductive network framework, and polar oxygen-rich groups, which are very befitting to load sulfur leading to excellent cycling stability of lithium-sulfur batteries. The composites of CsCNBs/sulfur exhibit an ultrahigh initial discharge capacity of 1245 mA h g−1 and ultralow capacity decay rate as low as 0.162% per cycle after 200 cycles at 0.1 C. Even at high current rate of 4 C, the cells still display a high initial discharge capacity (621 mA h g−1) and ultralow capacity decay rate (only 0.039% per cycle) after 1000 cycles. These encouraging results indicate that polar oxygen-containing functional groups are important for improving the electrochemical performance of carbons. The oxygen-doped carbon nanobelts have excellent energy storage potential in the field of energy storage

    High-mass Starless Clumps in the inner Galactic Plane: the Sample and Dust Properties

    Get PDF
    We report a sample of 463 high-mass starless clump (HMSC) candidates within 60deg<l<60deg-60\deg<l<60\deg and 1deg<b<1deg-1\deg<b<1\deg. This sample has been singled out from 10861 ATLASGAL clumps. All of these sources are not associated with any known star-forming activities collected in SIMBAD and young stellar objects identified using color-based criteria. We also make sure that the HMSC candidates have neither point sources at 24 and 70 \micron~nor strong extended emission at 24 μ\mum. Most of the identified HMSCs are infrared (24\le24 μ\mum) dark and some are even dark at 70 μ\mum. Their distribution shows crowding in Galactic spiral arms and toward the Galactic center and some well-known star-forming complexes. Many HMSCs are associated with large-scale filaments. Some basic parameters were attained from column density and dust temperature maps constructed via fitting far-infrared and submillimeter continuum data to modified blackbodies. The HMSC candidates have sizes, masses, and densities similar to clumps associated with Class II methanol masers and HII regions, suggesting they will evolve into star-forming clumps. More than 90% of the HMSC candidates have densities above some proposed thresholds for forming high-mass stars. With dust temperatures and luminosity-to-mass ratios significantly lower than that for star-forming sources, the HMSC candidates are externally heated and genuinely at very early stages of high-mass star formation. Twenty sources with equivalent radius req<0.15r_\mathrm{eq}<0.15 pc and mass surface density Σ>0.08\Sigma>0.08 g cm2^{-2} could be possible high-mass starless cores. Further investigations toward these HMSCs would undoubtedly shed light on comprehensively understanding the birth of high-mass stars.Comment: 16 pages, 15 figures, and 5 tables. Accepted for publication in ApJS. FITS images for the far-IR to sub-mm data, H2 column density and dust temperature maps of all the HMSC candidates are available at https: //yuanjinghua.github.io/hmscs.html. Codes used for this work are publicly available from https://github.com/yuanjinghua/HMSCs_ca
    corecore