16 research outputs found

    Investigation of the Hβ Molecular Sieve Inactivation Caused by Reactants and Products and Improvement of Continuous Thiophene Acylation

    No full text
    In this paper, the factors leading to the inactivation of the molecular sieve are explored in the batch thiophene (TH) acylation. The coexistence of acetic anhydride (AC) as the reactant and 2-acetylthiophene (2-ATH) as the product plays a key role in accelerating the inactivation, attributing to the 2-ATH polymerization. According to the molecular simulation, when AC is not present, the energy barrier of 2-ATH polymerization can be reduced from 287.45 kJ/mol to 85.87 kJ/mol. Then, the process of the continuous TH acylation is improved, in which thiophene is excessive (molar ratio). After optimizing the molar ratio and volume flowrate of raw material, the productivity of the catalyst can reach 21.56 g/g, which exceeds the best process previously studied (15.10 g/g). Subsequently, the use of carbon tetrachloride (CT) as a solvent is further studied, hoping to further improve the performance of the catalyst, and a significant advancement is achieved, in which the production capacity of the catalyst exceeds 45 g, and the conversion rate of AC can still be as high as 96% after the reaction is carried out for 15,000 min

    Selective Liquid-Phase Oxidation of Toluene with Molecular Oxygen Catalyzed by Mn3O4 Nanoparticles Immobilized on CNTs under Solvent-Free Conditions

    No full text
    The catalytic performance of Mn3O4 supported on carbon nanotubes (CNTs) in the liquid-phase oxidation of toluene to benzyl alcohol and benzaldehyde was studied. The supported catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms and ICP-MS. The results demonstrate that Mn3O4 nanoparticles loaded on CNTs performed better compared with pristine Mn3O4 or CNTs. The main reason for the increased catalytic activity is the dispersion and loading of Mn3O4 in CNTs. By optimizing the reaction temperature, reaction time, catalyst quality, oxygen flow rate and initiator dosage, the optimum reaction conditions were obtained. Using tert-butyl hydroperoxide (TBHP) as the initiator and oxygen as the oxidant, the toluene conversion rate was as high as 24.63%, and benzyl alcohol and benzaldehyde selectivity was 90.49%. The good stability of the catalyst was confirmed by repeating the experiment for four cycles and observing no significant changes in its performance

    Carboxylate-Assisted Carboxylation of Thiophene with CO<sub>2</sub> in the Solvent-Free Carbonate Medium

    No full text
    Direct carboxylation of thiophene with CO2 has been achieved under a relatively mild solvent-free carbonate and carboxylate medium. This base-mediated medium can cleave the very weakly acidic C–H bond without using other limiting reagents, which is one indispensable step in the carboxylation reaction. Product yield varies with different carboxylate salts, and cesium pivalate is the most suitable base additive among targeted simple carboxylate salts. Furthermore, the detailed mechanism of this carboxylation reaction is studied, which involves initial proton abstraction, rendered by carbonate and C–C bond formation, by inserting CO2. The activation energy barrier of the C–H activation step is higher than the following CO2 insertion step, whether for the formation of the mono- and/or di-carboxylate, which indicates that the C–H deprotonation induced by the base is slow and the resulting carbon-centered nucleophile reacts rapidly with CO2

    Mechanistic Insights into Palladium(II)-Catalyzed Carboxylation of Thiophene and Carbon Dioxide

    No full text
    The mechanism in palladium-catalyzed carboxylation of thiophene and CO2 is investigated using the density functional theory (DFT) calculations, including three consecutive steps of the formation of carbanion through breaking the C–H bond(s) via the palladium acetate, the elimination of acetic acid and the nucleophile attacking the weak electrophile CO2 to form C–C bond. Results show that the C–C bond is formed through taking the three-membered cyclic conformation arrangement involving the interaction of the transition metal and the CO2, and the CO2 insertion step is the rate-determining step for this entire reaction process. Aiming to precisely disclose what factor determine the origin of the activation energy barrier in this carboxylation reaction, the distortion/interaction analysis is performed along with the entire reaction coordinate

    Carboxylate-Assisted Carboxylation of Thiophene with CO2 in the Solvent-Free Carbonate Medium

    No full text
    Direct carboxylation of thiophene with CO2 has been achieved under a relatively mild solvent-free carbonate and carboxylate medium. This base-mediated medium can cleave the very weakly acidic C&ndash;H bond without using other limiting reagents, which is one indispensable step in the carboxylation reaction. Product yield varies with different carboxylate salts, and cesium pivalate is the most suitable base additive among targeted simple carboxylate salts. Furthermore, the detailed mechanism of this carboxylation reaction is studied, which involves initial proton abstraction, rendered by carbonate and C&ndash;C bond formation, by inserting CO2. The activation energy barrier of the C&ndash;H activation step is higher than the following CO2 insertion step, whether for the formation of the mono- and/or di-carboxylate, which indicates that the C&ndash;H deprotonation induced by the base is slow and the resulting carbon-centered nucleophile reacts rapidly with CO2

    Numerical simulation and experimental investigation of multiphase mass transfer process for industrial applications in China

    No full text
    This paper presents a comprehensive review of the remarkable achievements by Chinese scientists and engineers who have contributed to the multiscale process design, with emphasis on the transport mechanisms in stirred reactors, extractors, and rectification columns. After a brief review of the classical theory of transport phenomena, this paper summarizes the domestic developments regarding the relevant experiments and numerical techniques for the interphase mass transfer on the drop/bubble scale and the micromixing in the single-phase or multiphase stirred tanks in China. To improve the design and scale-up of liquid-liquid extraction columns, new measurement techniques with the combination of both particle image velocimetry and computational fluid dynamics have been developed and advanced modeling methods have been used to determine the axial mixing and mass transfer performance in extraction columns. Detailed investigations on the mass transfer process in distillation columns are also summarized. The numerical and experimental approaches modeling transport phenomena at the vicinity of the vapor-liquid interface, the point efficiency for trays/packings regarding the mixing behavior of fluids, and the computational mass transfer approach for the simulation of distillation columns are thoroughly analyzed. Recent industrial applications of mathematical models, numerical simulation, and experimental methods for the design and analysis of multiphase stirred reactors/crystallizers, extractors, and distillation columns are seen to garnish economic benefits. The current problems and future prospects are pinpointed at last
    corecore