24,621 research outputs found

    Relative Specificity: All Substrates Are Not Created Equal

    Get PDF
    AbstractA biological molecule, e.g., an enzyme, tends to interact with its many cognate substrates, targets, or partners differentially. Such a property is termed relative specificity and has been proposed to regulate important physiological functions, even though it has not been examined explicitly in most complex biochemical systems. This essay reviews several recent large-scale studies that investigate protein folding, signal transduction, RNA binding, translation and transcription in the context of relative specificity. These results and others support a pervasive role of relative specificity in diverse biological processes. It is becoming clear that relative specificity contributes fundamentally to the diversity and complexity of biological systems, which has significant implications in disease processes as well

    Scatter and Blurring Compensation in Inhomogeneous Media Using a Postprocessing Method

    Get PDF
    An efficient postprocessing method to compensate for the scattering and blurring effects in inhomogeneous medium in SPECT is proposed. A two-dimensional point spread function (2D-PSF) was estimated in the image domain to model the combination of these two physical effects. This 2D-PSF in the inhomogeneous medium is fitted with an asymmetric Gaussian function based on Monte Carlo simulation results. An efficient further blurring and deconvolution method was used to restore images from the spatially variant 2D-PSF kernel. The compensation is performed using a computer-simulated NCAT phantom and a flanged Jaszczak experimental phantom. The preliminary results demonstrate an improvement in image quality and quantity accuracy with increased image contrast (25% increase compared to uncompensated image) and decreased error (40% decrease compared to uncompensated image). This method also offers an alternative to compensate for scatter and blurring in a more time efficient manner compared to the popular iterative methods. The execution time for this efficient postprocessing method is only a few minutes, which is within the clinically acceptable range

    Extension Of Bertrand's Theorem And Factorization Of The Radial Schr\"odinger Equation

    Get PDF
    The Bertrand's theorem is extended, i.e. closed orbits still may exist for other central potentials than the power law Coulomb potential and isotropic harmonic oscillator. It is shown that for the combined potential V(r)=W(r)+b/r2V(r)=W(r)+b/r^2 (W(r)=arνW(r)=ar^{\nu}), when (and only when) W(r)W(r) is the Coulomb potential or isotropic harmonic oscillator, closed orbits still exist for suitable angular momentum. The correspondence between the closeness of classical orbits and the existence of raising and lowering operators derived from the factorization of the radial Schr\"odinger equation is investigated.Comment: 4 pages, 1 figug

    Meso-scale modelling of 3D woven composite T-joints with weave variations

    Get PDF
    A meso-scale modelling framework is proposed to simulate the 3D woven fibre architectures and the mechanical performance of the composite T-joints, subjected to quasi-static tensile pull-off loading. The proposed method starts with building the realistic reinforcement geometries of the 3D woven T-joints at the mesoscale, of which the modelling strategy is applicable for other types of geometries with weave variations at the T-joint junction. Damage modelling incorporates both interface and constituent material damage, in conjunction with a continuum damage mechanics approach to account for the progressive failure behaviour. With a voxel based cohesive zone model, the proposed method is able to model mode I delamination based on the voxel mesh technique, which has advantages in meshing. Predicted results are in good agreement with experimental data beyond initial failure, in terms of load-displacement responses, failure events, damage initiation and propagation. The significant effect of fibre architecture variations on mechanical behaviour is successfully predicted through this modelling method without any further correlation of input parameters in damage model. This predictive method will facilitate the design and optimisation of 3D woven T-joint preforms

    A Study of Missing Data Imputation and Predictive Modeling of Strength Properties of Wood Composites

    Get PDF
    Problem: Real-time process and destructive test data were collected from a wood composite manufacturer in the U.S. to develop real-time predictive models of two key strength properties (Modulus of Rupture (MOR) and Internal Bound (IB)) of a wood composite manufacturing process. Sensor malfunction and data “send/retrieval” problems lead to null fields in the company’s data warehouse which resulted in information loss. Many manufacturers attempt to build accurate predictive models excluding entire records with null fields or using summary statistics such as mean or median in place of the null field. However, predictive model errors in validation may be higher in the presence of information loss. In addition, the selection of predictive modeling methods poses another challenge to many wood composite manufacturers. Approach: This thesis consists of two parts addressing above issues: 1) how to improve data quality using missing data imputation; 2) what predictive modeling method is better in terms of prediction precision (measured by root mean square error or RMSE). The first part summarizes an application of missing data imputation methods in predictive modeling. After variable selection, two missing data imputation methods were selected after comparing six possible methods. Predictive models of imputed data were developed using partial least squares regression (PLSR) and compared with models of non-imputed data using ten-fold cross-validation. Root mean square error of prediction (RMSEP) and normalized RMSEP (NRMSEP) were calculated. The second presents a series of comparisons among four predictive modeling methods using imputed data without variable selection. Results: The first part concludes that expectation-maximization (EM) algorithm and multiple imputation (MI) using Markov Chain Monte Carlo (MCMC) simulation achieved more precise results. Predictive models based on imputed datasets generated more precise prediction results (average NRMSEP of 5.8% for model of MOR model and 7.2% for model of IB) than models of non-imputed datasets (average NRMSEP of 6.3% for model of MOR and 8.1% for model of IB). The second part finds that Bayesian Additive Regression Tree (BART) produced most precise prediction results (average NRMSEP of 7.7% for MOR model and 8.6% for IB model) than other three models: PLSR, LASSO, and Adaptive LASSO

    Wu Sunfu and Darnay

    Get PDF
    The two characters, Wu Sunfu in Midnight and Darnay in A Tale of Two Cities are the typical representatives of Chinese and British gentleman respectively. The authors of these two books use the similar perspective and attitude, showing the complex images of the two gentlemen, different from other traditional ones. Two writers who live in the period of social transformation, experienced the time of change, so the image of gentlemen they shape is the literature expression of contradiction in writers’ inner world

    Experimental assessment of the mechanical behaviour of 3D woven composite T-joints

    Get PDF
    To understand the influence of the fibre architecture of 3D woven composite T-joints on mechanical performance, as well as the benefits that 3D woven T-joints can offer over the equivalent 2D laminates, experimental testing is performed on two types of 3D woven T-joint with only weave variation at the junction, and one type of 2D woven laminate T-joint. A quasi-static tensile pull-off loading is selected in this work as this out-of-plane load case is one of the typical loading conditions for such T-joint structures. The significant advantages of 3D woven composite T-joints in terms of ultimate strength and damage tolerance over the 2D alternative were identified in the testing. More importantly, this work showed that variation in the fibre architecture can considerably enhance properties such as delamination resistance and total energy absorption to failure, as well as increasing slightly the stiffness and initial failure load. This experimental assessment has demonstrated that using 3D woven reinforcements is an effective way to improve the load-bearing capability of composite T-joints over laminates, and also that this improvement could be optimised with regard to fibre architecture
    corecore