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Abstract 

Problem: Real-time process and destructive test data were collected from a wood 

composite manufacturer in the U.S. to develop real-time predictive models of two key 

strength properties (Modulus of Rupture (MOR) and Internal Bound (IB)) of a wood 

composite manufacturing process.  Sensor malfunction and data “send/retrieval” 

problems lead to null fields in the company’s data warehouse which resulted in 

information loss.  Many manufacturers attempt to build accurate predictive models 

excluding entire records with null fields or using summary statistics such as mean or 

median in place of the null field.  However, predictive model errors in validation may be 

higher in the presence of information loss.  In addition, the selection of predictive 

modeling methods poses another challenge to many wood composite manufacturers. 

Approach: This thesis consists of two parts addressing above issues: 1) how to improve 

data quality using missing data imputation; 2) what predictive modeling method is better 

in terms of prediction precision (measured by root mean square error or RMSE).  The 

first part summarizes an application of missing data imputation methods in predictive 

modeling.  After variable selection, two missing data imputation methods were selected 

after comparing six possible methods.  Predictive models of imputed data were developed 

using partial least squares regression (PLSR) and compared with models of non-imputed 

data using ten-fold cross-validation.  Root mean square error of prediction (RMSEP) and 

normalized RMSEP (NRMSEP) were calculated.  The second presents a series of 

comparisons among four predictive modeling methods using imputed data without 

variable selection. 
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Results: The first part concludes that expectation-maximization (EM) algorithm and 

multiple imputation (MI) using Markov Chain Monte Carlo (MCMC) simulation 

achieved more precise results.  Predictive models based on imputed datasets generated 

more precise prediction results (average NRMSEP of 5.8% for model of MOR model and 

7.2% for model of IB) than models of non-imputed datasets (average NRMSEP of 6.3% 

for model of MOR and 8.1% for model of IB).  The second part finds that Bayesian 

Additive Regression Tree (BART) produced most precise prediction results (average 

NRMSEP of 7.7% for MOR model and 8.6% for IB model) than other three models: 

PLSR, LASSO, and Adaptive LASSO. 
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Chapter 1 

Background and Introduction 
              

Predictive modeling has become an important technique to improve the quality of 

wood composites and is also used in other manufacturing systems.  This paper studies 

two aspects of predictive modeling: 1) how to impute missing values to improve data 

quality; and 2) how to choose predictive models to improve prediction precision.  The 

rest of this chapter and remainder of the thesis are organized as follows.   

Chapter 1 describes the background of wood composite manufacturing and how 

the data were assessed and processed.  Chapter 2 demonstrates the process of variable 

selection and dimension reduction of the original data.  Chapter 3 is composed of two 

parts: a) six missing data imputation methods were compared and the best methods were 

selected to generate imputed datasets; and b) partial least square regression (PLSR) was 

applied to both the non-imputed and imputed data to demonstrate the impact of missing 

data imputation on predictive modeling results.  In Chapter 4 data were re-imputed to 

further study and compare four predictive modeling methods.  Chapter 5 concludes the 

findings presented in Chapters 3 and 4.  In Chapter 6 future studies and research 

originated from current results are discussed.    

 

1.1. Background 

 The forest products industry is an important contributor to the U.S. economy.  

The U.S. forest products industry accounts for approximately six percent of the total U.S. 

manufacturing gross domestic product (GDP), placing it on par with the automotive and 
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plastics industries.  The industry generates more than $200 billion a year in sales and 

employs approximately 900,000 people earning $50 billion in annual payroll. The 

industry is among the top 10 manufacturing employers in 42 states (American Forest and 

Paper Association (2010)).   

This thesis describes a study that was performed for a large-capacity wood 

composite panel manufacturing factory in the southeastern U.S.  The factory produces 

particleboard wood composite panels which are used in furniture, cabinetry, shelving, etc.  

Two key product quality metrics are: Modulus of Rupture (MOR) and Internal Bound 

(IB).  MOR and IB are obtained via destructive test where samples of final product are 

taken every one to two hours from the production line and cut from the cross sections of 

the master-panel of particleboard.  The average MOR and IB strengths are measured in 

kilopascal (kPa) and stored in a data warehouse.  However, the time span between 

destructive tests may be as long as two hours, during which a significant amount of 

production occurs.  Given the time gap between consecutive destructive tests, hours of 

particleboard could be manufactured out of specification resulting in rework and scrap.  

This time gap and lack of real-time knowledge of strength properties may also lead to 

higher than necessary operational targets of resin and wood, which are non-competitive 

from a business perspective.   

The factory is exploring “real-time” prediction of MOR and IB as a remedy to 

maintain product specification and minimize costs.  The data for the potential predictor 

variables (e.g., fiber moisture, line speed, mat temperature, press pressure, etc.) come 

from the hundreds of sensors on the production line that are typically used for process 
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control.  All process data are simultaneously transported and merged with MOR and IB 

records into one database at the time of sampling from the production line.  A real-time, 

automated relational database was created for this study that aligned real-time process 

sensor data with the destructive test data of the laboratory for the 118 possible product 

types (e.g., 16mm regular, ¾” high strength, etc.).  Lag times of the sensor data were 

established that corresponded to the time required for the wood fibers to travel through 

the process passing by multiple sensors before finally reaching the outfeed of the 

continuous press.  One calibration model was built from the sensor data to predict MOR 

and IB for all of the 118 product types.   

A major problem for all manufacturers that collect real-time data from sensors is 

missing data.  The missing data problem is usually caused by the malfunctioning sensors 

that require replacement, or data send/retrieve errors to the data warehouse across the 

programmable logic controller (PLC) Ethernet network.  A common approach is to 

explore statistical models without the missing records associated with the null fields in 

the database.  By default, many statistical packages (e.g., SAS
® 

and R) will exclude the 

entire record if there is a missing field for a predictor variable.  In real-time data 

warehousing in a manufacturing environment, there may be hundreds of possible 

predictor variables with many null fields, the exclusion of records can result in substantial 

information loss.  The validity and precision (measured by root mean squares error) of 

predictive models can be adversely affected from such information loss.   
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1.2. Data introduction 

 The first step in this study was to assess the quality of collected data.  After 

removing the non-recorded sensor data in the database, there were 237 predictor variables 

and two response variables (MOR and IB).  In total there were 4,522 records.  There were 

11 records with response variables missing and the records were deleted.  Every predictor 

variable had at least 2.4% of data missing.  The missing rate varied from 2.4% to 81%.  

Six percent of predictor variables had more than 20% of data missing.  Every record also 

had missing fields with missing rate ranging from less than 0.5% to 90%.  Only six 

records had a missing rate above 20%.  According to previous empirical studies (UCLA 

Statistical Consulting Service (2011)), an approximate 10% missing rate for a variable is 

considered to be suitable for an analysis without imputation, a strategy sometimes 

referred to as “complete case analysis.”   Also, with an increase in the missing rate, the 

accuracy and robustness of imputation, especially multiple imputation (MI), will be 

adversely affected (Ni et al. (2005) and Soullier et al. (2010)).  An increase in the missing 

rate also requires relatively more iterations of imputation under MI, which elongates the 

computation time.  Thus, predictor variables and observations with more than 20% 

missing rate were excluded.  This resulted in 222 predictor variables and 

4,411observations.  There were 3,647 records with at least two or more fields missing.   

Predictors were highly correlated as suggested by the variance-covariance matrix 

and variation-inflation factors (VIF).  Given the large differences in the scales of the 

predictors, all predictors were standardized before model development, i.e., 
     

  
, where    

is the average of non-missing values.   
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Chapter 2  

Variable Selection 
 

After initial data quality assessment, we continued to select predictor variables to 

impute.  There are two reasons for performing variable selection before imputing missing 

data and proceeding with predictive modeling.  The first reason is due to the constraint of 

computation resources required by iterated computation (e.g., maximum-likelihood based 

method and MI).  Truxillo (2005) and Lanning et al. (2003) noted that SAS
® 

or R can 

become slow or may not converge on imputation results.  We also tried imputation 

without selecting variables beforehand.  Both the expectation-maximization (EM) 

algorithm and MI failed to converge after lengthy iterations.  A second reason for 

variable selection is to exclude non-informative variables.   Variable selection for large 

highly correlated multi-dimensional or even high-dimensional process data are becoming 

increasingly important in statistical analysis for modern manufacturing environment, as 

documented by Wang and Jiang (2009), Gonźalez and Sánchez (2010).  They all 

proposed or performed relevant variable selection methods prior to analyzing datasets of 

tens and hundreds of production process variables.  Guyon and Elisseeff (2003) also 

concluded that variable selection could reduce the calibration modeling training time and 

improve prediction performance.   

 

2.1. Literature Review 

Variable selection and data dimension reduction have been performed quite often 

and become an essential step in predictive modeling in wood composites (Young and 
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Guess (2002), Young et al. (2004), Young et al. (2008), Clapp et al. (2008), André et al. 

(2008)).  Methods such as multiple linear regression (MLR), correlation analysis, 

principal component analysis (PCA), and genetic algorithm (GA) were used in earlier 

studies.  The existence of multicollinearity in this study’s dataset rendered MLR 

ineffective because the computation of covariance matrices of predictor variables could 

be ill conditioned (Soh et al. (2005)).    Clapp et al. (2008) analyzed the correlation 

matrix of predictor variables with the response variable internal bond (IB).  The ten 

variables with the highest (absolute value) correlation with the response variable were 

selected for further predictive modeling.  However, in this study for the purpose of 

imputing missing data, we needed to incorporate as much information as possible from 

the available data while reducing the number of variables to make the imputation feasible 

for computation.  It would be difficult to select variables based solely on the correlation 

matrix.  In previous studies modeling wood composite manufacturing process, Principal 

component analysis (PCA) has been considered as a most popular method to select 

variables for large multi-dimensional data (see, for instance, Parsons et al. (2004), 

Gonźalez and Sánchez (2010)).  Clapp et al. (2008) also adopted PCA in a previous study 

of predictive modeling in wood composites.  However, most of those studies also noted 

the limit of PCA on industrial applications. In PCA, the new variables (components) are 

linear combinations of the original weighted variables.  While often very useful, PCA 

doesn’t reduce the effective number of variables and information from irrelevant 

variables is still preserved.   
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Another newly adopted variable selection method in predicting wood composites 

is genetic algorithms (GA).  André et al. (2008) used GA to exclude non-informative 

variables for the improvement of predictive models.  However, they excluded records that 

contained null fields instead of imputing missing data.  The GA method turned out to be 

useful in their study but the cost of computation time was high and limited the 

capabilities real-time predictive modeling.  Other potential problems of using GA for 

industrial applications include extra spurious variables, computation convergence, and 

inappropriate control parameter setup in the GA (e.g., Draper and Fouskakis (2000), Soh 

(2005), Zhu and Chipman (2006)).   

 

2.2. LASSO Method 

Based on the literature reviewed related to variable selection, the LASSO method 

(Tibshirani (1996)) was selected in this study for variable selection.  Let            
  

represent the response vector and               
           denote the linear 

independent predictors. Suppose that             is the predictor matrix.  We assume 

that data are centered.  The LASSO estimates can be expressed as: 

                                              

 

   

 

 

      
      

       

 

   

                                   

where       
 

   
 is the penalty term and the solution could shrink towards zero, with 

which variables with zero coefficients are dropped.  For details refer to Hastie et al. 

(2009). 
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As indicated above, LASSO was developed to achieve shrinkage and variable 

selection simultaneously, initially as a constrained version of the ordinary least squares 

(OLS) estimator.  LASSO has been widely used in medicine, economics, and other 

scientific fields which have large multi-dimensional data (Hastie et al. (2009) and Salvin 

(2010)).   Recently it has been adopted more in modern manufacturing environments.  

Wang and Jiang (2009) used a family of “penalized regression” methods, which includes 

LASSO, for out-of-control variable selection for statistical monitoring of high-

dimensional manufacturing process data.  They used a method of the same family with 

LASSO (except for the minor difference in the penalty term) to develop a variable-

selection-based multivariate control chart and applied it to a group of high-dimensional 

data from a wood composites factory.   

 

 2.3. Variable Selection Results 

In this study we performed LASSO using the “lars” package of R (Efron et al. 

(2004)).  Two linear models for the two datasets with MOR and IB as the response 

variables were built using LASSO regression.  Variables with extremely small estimators 

(β      ) were removed.  After this selection process, we obtained two non-imputed 

datasets.  The dataset for MOR as the response had 107 predictor variables and 1,073 

complete observations out of 4,411 observations; the dataset for IB as the response had 

86 predictor variables and 1,194 complete observations out of 4,411 observations.  
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 Chapter 3 

Missing data imputation  
 

Missing data imputation depends on the pattern of missing data.  Different 

missing pattern have different imputation methods.  This chapter introduces the 

background of missing data patterns and the process of determining the missing 

mechanism of data in this study.  Accordingly six appropriate imputation methods were 

compared.  The objective of this portion of the thesis study was to determine whether the 

additional information generated by imputation improves the predictive modeling results.      

 

3.1. Missing Data Pattern 

Since different missing data patterns may require different imputation methods, 

we studied the missing pattern of the datasets before selecting an appropriate imputation 

method.  As first introduced by Little and Rubin (1987), there are three major patterns: 1) 

missing completely at random (MCAR); 2) missing at random (MAR); and 3) non-

ignorable missing data (MNAR).  MCAR occurs when the missing values on variable Y 

are independent of all other observed variables and the values of Y itself, which is a very 

strong assumption and can be impractical for real-life data (Muthén et al. (1987)).  MAR 

assumes that the probability that an observation is missing on variable Y depends on 

other observed variables but not on the values of Y itself, which is more plausible than 

MCAR.  Under MNAR a missing value no longer occurs “at random” since the 

probability that an observation is missing on variable Y depends on other unobserved 

variables.   
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In this study we assumed MAR for each dataset.  Many researchers have noted 

that in many situations MCAR can be rejected empirically in favor of MAR, especially 

by including a relatively rich set of predictors in the model (e.g. Rubin (1996), Schafer 

(1997), and Collins et al. (2001)).  In this study we used sensors to include as many 

predictor variables as possible during the manufacturing process and retained almost half 

of the predictors after variable selection.   We didn’t assume MNAR because some 

studies suggested that presence or absence of NMAR can hardly be demonstrated using 

only the observed data (King et al. (2001) and Yarandi (2002)).  

After assuming MAR, another important concept to decide was monotone 

“missingness.”  If the dataset can be rearranged in such a way that there is a hierarchy of 

“missingness,” namely when a variable Yj is missing for the individual observation i, 

implies that all subsequent variables Yk , k>j, are all missing for the individual 

observation i.  Otherwise the missing pattern of MAR is said to be arbitrary.  The reason 

for checking monotone “missingness” is that it influences the imputation method.  

Simpler methods can be used if the pattern is monotone, for instance, the propensity score 

method using logistic regression (e.g. Lavori et al. (1995), Yuan (2000)).  However, 

monotone assumption is uncommon in most realistic settings (Horton and Kleinman 

(2007)).   For datasets with large dimensionality such as is the case in this study, it’s also 

unrealistic to check the monotone “missingness” via plotting the missing pattern.  

Therefore, we assumed the datasets had arbitrary instead of monotone missing values. 
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3.2. Imputation Methods 

The focus of previous studies on missing data is to use imputation to better 

estimate the parameters of the statistical model instead of filling missing fields (e.g., 

Little and Rubin (2002)). The literature on missing data in manufacturing industry 

applications is sparse.  Substituting missing values with summary statistics such as mean 

or median are used often (e.g., UCLA Statistical Consulting Service (2011)).  A study by 

Jensen et al. (2008) noted the impact of missing data on statistical process control 

applications.  In addition to mean/median substitution, we also included two widely used 

methods: simple random imputation and the last-value-carried-forward (LOCF); along 

with two imputation methods involving iterated computation: maximum likelihood 

method using expectation-maximization or the EM algorithm and MI using Markov chain 

Monte Carlo (MCMC).  A brief review for those methods and their usages in this study 

are provided. 

Mean/median substitution replaces missing fields with the mean/median of the 

corresponding variable.  Mean substitution is also called “unconditional mean” 

imputation (Little (1992)).  There is also “conditional mean” imputation which considers 

data values from other predictor variables (Schafter (1997)).  A common approach of 

“conditional mean” imputation is to use a regression model, i.e., replacing missing values 

with predicted values from a regression analysis using other predictor variables (Fetter 

(2001), McGee and Bergasa (2005), and Faraway (2005)).  The last observation carried 

forward (LOCF) method replaces missing values with the last known value of the 

variable in a time-ordered data set (the MOR and IB datasets in our study were time-
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ordered).  Programs in R were written to perform LOCF.  However, Horton and 

Kleinman (2007), Gelman and Hill (2007), and Hamer et al. (2009) have all noted bias 

introduced by the LOCF method.   

The simple random imputation method (“hot-deck method”) replaces the missing 

value with a randomly selected value from another observation in the same variable.  

This method is common and efficient for survey studies of large datasets with a low 

fraction of missing values and is beneficial for possible real-time predictive modeling 

(Altmayer (2002), Lanning and Berry (2003)).  However, it has a fundamental flaw of 

underestimating the variability caused by uncertainty of missing values (Little and Rubin 

(2002), Gelman and Hill (2007)).    

Programs in R were written for the simple imputation methods 

(mean/median/single random imputation).  These methods may be considered to be 

accurate if the proportion of missing values is small (e.g., less than 5%) (Yarandi (2002)).  

They could be easy to implement for the univariate missing case but may be difficult to 

implement for the multiple missing variable case (Sinharay et al. (2001)).  

Comparatively, imputation methods based on maximum-likelihood and MI take all of the 

variables into account using iterated computation.    

The EM algorithm is usually used for maximum-likelihood method and has 

theoretical benefits (Little and Rubin (1986)).  Simulation studies have suggested that 

EM may be superior to traditional mean/median substitution and hot-deck methods 

(Enders (2001)).  In general EM iterates through two steps to obtain estimates.  The first 

step is the “expectation” or E step, in which missing values are filled-in with a guess, i.e., 
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an estimate of the missing value, given the observed values in the data.  The second step 

is “maximization” or M step, in which the completed data from the “E step” are 

processed using maximum-likelihood (ML) estimation as though they were complete 

data, and the mean and the covariance estimates are updated.  Using the updated mean 

and covariance matrix, the “E step” is repeated to find new estimates of the missing 

values.  The E and M steps are repeated until the maximum change in the estimates from 

one iteration to the next does not exceed a convergence criterion (Truxillo (2005)).  In 

this study we used PROC MI in SAS
®
 (Version 9.2) for the EM algorithm and the default 

convergence criterion of SAS. 

In addition to the aforementioned imputation methods which replace each missing 

value with one value, the multiple imputation (MI) by Rubin (1986) replaces each 

missing value with a set of plausible values that represent the uncertainty of the correct 

value.  The key steps can be concluded as follows (Allison (2000)): 

 First, impute missing values using an appropriate model that incorporates 

random variation;   

 Second, repeat this process for M times (e.g., 3 to 5 times), producing M 

“complete” data sets;   

 Third, perform the desired analysis on each data set using standard complete-

data methods;  

 Fourth, average the values of the parameter estimates across the M samples to 

produce a single point estimate.   
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The direct approach for MI is MCMC (Schafer (1997)).  In general, MCMC is 

based on pseudo-random draws which allows researchers to obtain several imputed data 

sets.  In MCMC simulation, one constructs a long Markov Chain to establish a stationary 

distribution, which is the distribution of interest.  By repeatedly simulating steps of the 

chain, the method draws imputed estimates from the distribution.  Thus, a series of 

complete datasets are generated (Patterson and Yeh (2007)).  In this study, we plotted 

auto-correlation functions (ACF) to test stationarity and MCMC model convergence.   

Regarding the choice of “M” times, historically and in practice, the 

recommendation is to generate three to five imputed datasets (Rubin (1986), Yuan 

(2000)).  This suggestion is most appropriate when the proportion of missing values is 

relatively low, which was the case of this study, e.g., most variables had a missing 

fraction of less than 20% after initial data quality assessment and variable selection.  It 

has also been recommended that with a larger value of M the estimates could be more 

consistent (Schafer and Olsen (1998), UCLA Statistical Consulting Services (2001)).  

There is a trade-off between “M” and computation time.  We chose to generate five 

imputed complete datasets for practicality. 

When performing MI for each dataset using PROC MI in SAS, we put all 

variables into calculation including the response variables of MOR or IB.  The advantage 

of doing so was that the imputation model could use all of the information (UCLA 

Statistical Consulting Service (2011)).  After iterated calculation, we averaged the M 

imputed datasets directly to get a final complete dataset while keeping all of the observed 

values intact.  For example, imputation for the missing value Q:  
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where     denotes the imputed value of missing Q in each of M datasets.  Ni et al. (2005) 

and Datta et al. (2007) adopted similar methods to combine and process the multiple 

imputed data.   

A review of the literature suggested that MI has been widely adopted in areas 

such as survey polling, psychology, agriculture economics, and clinical research, but no 

literature was published for manufacturing applications (King et al. (2001), Fetter (2001), 

Lin (2010)).  The advantage of MI over traditional simple imputation methods is that the 

uncertainty of the correct value to impute is represented by replacing each missing value 

with a set of plausible values (Allison (2000)).  There are not many direct comparisons 

between maximum-likelihood method and MI imputed data precision.  Enders (2001) and 

Newman (2003) used simulated data and concluded that under the assumption of MAR 

both methods worked best outperformed other methods in terms of the smaller error of 

the estimated parameters based on the imputed data.  Lin (2010) performed empirical 

studies and simulation studies comparing EM and MCMC and suggested no significant 

difference between the two when estimating parameters.  Lin (2010) also noted that the 

number of imputations in MCMC and proportion of missing data had little impact on 

error.   

 

3.3. Imputation Comparison 

Ten-fold cross-validation was used on imputed values for the MOR and IB 

datasets to compare the precision of imputed values for each of above six methods.  The 

portion of complete observations of each dataset were randomly partitioned as matrix into 
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ten subsamples, i.e., for the MOR dataset the 1,073 complete observations had       

           values; each subsample had 11,481 values.  Each subsample of IB dataset 

had sample size of 10,268, one tenth of                  values.   

Take IB dataset for example, for each of ten subsamples, one subsample of 10,268 

was retained as validation data.  This subsample of complete records had all known 

values purposively removed as missing, which was used for validation.  This imputation 

process was repeated ten times for each of the six imputation methods for each subsample 

data set. The statistic for imputation validation was root mean square error (RMSE):   

                                                          
         

  
   

 
                                 (3)  

where   is the true value of predictors assigned as missing and    is its imputed value; n 

represents the number of values in one subsample (validation dataset).   

We present the cross-validation results calculated from data for MOR in Table 3.1 

and data for IB in Table 3.2.  Since the RMSEs were calculated from data of different 

standardized predictor variables, the RMSEs in Table 3.1 and Table 3.2 are unit less.  We 

denoted the smallest RMSE of each imputation in bold. 

As shown in Table 3.1, the averaged RMSE for data imputed with the EM method 

and MCMC method are the lowest among all, 0.43 and 0.41 respectively, much lower 

than results of other methods.  Table 3.2 indicates the same results.  EM imputed data 

produced RMSE of 0.42 and MCMC imputed data produced RMSE of 0.53.  For MOR 

dataset, EM and MCMC also outperformed other methods across the ten times of 

validation.  For the IB dataset, RMSE was lower for eight out of ten imputations for the 

EM or MCMC methods.  Surprisingly, LOCF had the lowest RMSE twice. However, the  
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Table 3.1  RMSEs from Imputations for Standardized Dataset with MOR as Response 

RMSE Mean 

Substitution 

Median 

Substitution 

 

Single 

Random 

Imputation 

LOCF EM MCMC 

1 1.92 0.17 1.87 2.14 0.14 0.09 

2 4.54 2.28 5.01 1.84 0.70 0.37 

3 4.43 1.92 2.66 1.41 0.92 0.59 

4 3.47 1.39 3.14 0.96 0.07 0.26 

5 2.16 0.27 2.52 0.54 0.12 0.07 

6 2.01 0.40 2.60 0.93 0.24 0.48 

7 2.18 0.74 0.86 0.84 0.27 0.25 

8 4.08 1.58 3.04 2.54 0.87 0.86 

9 3.63 1.58 5.12 1.48 0.19 0.28 

10 5.23 2.87 2.62 1.83 0.79 0.84 

Average 3.37 1.32 2.94 1.45 0.43 0.41 

 

 

Table 3.2  RMSEs from Imputations for Standardized Dataset with IB as Response 

RMSE Mean 

Substitution 

Median 

Substitution 

 

Single 

Random 

Imputation 

LOCF EM MCMC 

1 3.08 0.77 4.92 0.08 0.33 0.33 

2 4.55 1.15 1.44 0.92 0.65 0.79 

3 2.48 1.46 0.57 1.70 0.27 0.25 

4 4.16 1.08 2.84 2.31 0.98 0.90 

5 3.92 0.34 2.61 1.43 0.12 1.41 

6 2.47 1.09 2.55 2.06 0.10 0.02 

7 2.24 1.63 1.99 0.74 0.11 0.15 

8 2.26 0.79 1.48 0.75 0.43 0.66 

9 2.96 0.51 1.46 1.79 0.64 0.45 

10 3.49 0.05 5.04 0.05 0.59 0.37 

Average 3.16 0.89 2.49 1.18 0.42 0.53 
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median substitution method produced the third best results for both datasets.  There does 

not appear to be any consistent difference between the RMSEs for either the EM and 

MCMC methods.  However, there is evidence that the EM and MCMC methods greatly 

outperform imputation using the average or median methods. Given these results, the EM 

and MCMC methods were used to impute the MOR and IB datasets.   

 

3.4. Partial Least Squares Regression 

Partial least squares regression (PLSR) was developed to model the relation 

between predictor variable matrix X and a response matrix Y (Wold et al. 1984 Tobias 

1997).  PLSR decomposes X into orthogonal component scores T and loadings P using 

singular value decomposition (SVD): 

                                                                                                                            

Y is not regressed on X but on the first a columns of the component scores T. 

In this study, the “pls” package of R (Version 2.11.1) was used to perform PLSR 

(Mevik and Wehrens 2007).  The components (latent variables) in PLSR are obtained 

iteratively.   We demonstrate the algorithm of PLSR in steps as follows: 

We start with the singular value decomposition (SVD) of the cross-product matrix  

      to include information on variation in both X and Y, and on the correlation 

between them.  The first left and right singular vectors, w and q, are used as weight 

vectors for X and Y, respectively, to obtain scores t and u: 
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where E and F are initialized as X and Y, respectively.  The X scores t are often 

normalized: 

                                                    
 

    
                                                                                                                                   

Next E and F loadings are obtained by regressing on the same vector t: 

                                                                                                                                             

                                                                                                                                 

Finally, the data matrices are “deflated”: the information related to this component (latent 

variable), in the form of the outer products              is subtracted from the (current) 

data matrices E and F. 

                                                                                                                                                                     

                                                                                                                                                                     

The estimation of the next component then can start from the SVD of the cross-

product matrix     
     .  After each iteration, vectors w, t, p, and q are saved as 

columns in matrices W, T, P, and Q, respectively.  We use W and P to form a new matrix 

R to relate to the original matrix predictor variable X for further regression analysis: 

           and       . 

Instead of regressing Y on X using ordinary least squares (OLS) regression, we 

use component scores T to obtain the regression coefficients B, where 

                                                                                                          

In the above regression, we do not use all but the first a columns of the 

component scores T.  We use 10 fold cross-validation in R (version 2.11.1) to decide the 
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optimal number of a.  For the specific settings in statistical package R please refer to 

CRAN online document of package “pls” (Wehrens and Mevik (2007)).  

After imputation, both EM and MCMC imputed data had 4,411 complete 

observations.  Ten-fold cross-validation was used to evaluate model performance of 

imputed data and non-imputed data.
1
  We again used the root mean square error for 

prediction (RMSEP) to measure the precision of PLSR model predictions in validation                                                                    

                                                           
         

  
   

 
                                                                                          

where   is the true value of MOR and    is the predicted value; n represents the number of 

values in one validation dataset.  We also computed the normalized RMSEP or NRMSEP 

as follows 

                                                          
     

         
                                                                                                

where the denominator represents the data range of validation dataset.   

 

3.5. Impact of Imputation on PLSR Prediction 

To evaluate the model fitting for imputed and non-imputed datasets, we first 

plotted predicted MOR and IB against actual MOR and IB from ten-fold cross-validation 

respectively.  We demonstrate the forth validation for PLSR models of MOR and IB data 

in following Figure 3.1 and Figure 3.2.  As can be seen less dispersion of the plot 

                                                 

 
1
 For MOR, 1,073 complete observations of non-imputed data were randomly partitioned 

into ten subsamples, each of 107 observations.  We retained one single subsample of 107 

as the validation dataset and used the other nine subsamples to impute missing values 

using EM and MI.  Then we used the nine subsamples (for the non-imputed case) and the 

nine subsamples along with imputed data (for imputed case) to train (build) the 

calibration model of PLSR respectively.  This process was repeated ten times.   
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represents better precision of the model.  We also calculated the correlation coefficient (r) 

between the true values and predicted values to demonstrate the level of the correlation 

between the two.  The correlation coefficient (r) serves to express the strength and 

direction of a linear relationship between the predicted values and true values of the 

validation dataset.  Values of r closer to 1 indicate stronger positive linear relationship, 

which represents better predictive performance of PLSR models.   

In Figure 3.1, PLSR models of imputed datasets of MOR with EM (        and 

MI (        generate less spread plots than the model of non-imputed dataset does 

(       .  Figure 3.2 indicates that plots for models of EM-imputed dataset of IB 

(        and MI-imputed dataset of IB (        show less dispersion than the plot 

for the model of non-imputed dataset (        does.  More plots are available in 

Appendix A.  Those plots also illustrate that PLSR models based on imputed datasets 

provide better predictive ability.  

We further compared and presented RMSEPs (in kPa) and NRMSEPs (%) for 

PLSR modeling of non-imputed and imputed datasets for MOR in following Table 3.3.   

PLSR models of datasets imputed with MCMC outperformed PLSR models of EM 

imputed datasets in seven of the ten cross-validations.  The average RMSEP from models 

of the MCMC-imputed datasets is 678.24 kPa and 680.76 kPa from models of the EM-

imputed datasets.  In all cross-validations, non-imputed datasets consistently generated 

the highest RMSEPs and NRMSEPs with the average of 733.05 kPa and 6.3%, 

respectively.  The average NRMSEP for models of MCMC-imputed datasets and EM-

imputed datasets were both 5.8%. 
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Figure 3.1  Plots of Predicted MOR (kPa) versus Actual MOR (kPa) from the Forth 

Validation out of Ten-fold Cross-validation. 

 

   

Figure 3.2  Plots of Predicted IB (kPa) versus Actual IB (kPa) from the Fourth 

Validation out of Ten-fold Cross-validation. 
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These results demonstrate the usefulness and benefits of imputation in predictive 

modeling as applied to manufacturing.  The results also illustrate the impact of 

information loss on PLSR predictive models for the MOR strength of particleboard. 

  Comparative results of PLSR models for imputed and non-imputed datasets for 

IB are summarized in Table 3.4.  Similar to the results for MOR (Table 3.3), EM imputed 

datasets had best prediction results in six of the ten cases when compared to the PLSR 

models developed from MCMC-imputed datasets.  There is no notable difference 

between the average RMSEP from models of EM-imputed data (RMSEP = 51.10 kPa) 

and the one (51.20 kPa) from models of MCMC-imputed data.  The NRMSEPs produced 

by models of imputed datasets (average NRMSEP = 7.2% for both EM and MCMC 

cases) are also consistently smaller than NRMSEP from models of non-imputed datasets 

(average NRMSEP = 8.1%).  This demonstrates the potential benefits of imputation for 

PLSR predictive models of IB particleboard strength and further illustrates the impact of 

information loss.   

Study results for both MOR and IB illustrate the benefit of imputation on PLSR 

model performance, i.e., smaller RMSEPs and NRMSEPs.  Improved precision of 

predictive models using imputation may help practitioners better diagnose sources of 

variation and provide early detection signals of potential strength failures which result in 

potential customer claims.  Such imputed datasets and predictive models may also reduce 

the practice of unnecessarily over-engineering the strength of wood composite panels.  

Over-engineering of particleboard by operations personnel are the result of a lack of real- 
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Table 3.3  RMSEPs (kPa) and NRMSEP(%) for PLSR on Non-imputed and Imputed 

Datasets for MOR Strength 

RMSEP(NRMSEP) PLSR
a
 for Non-

Imputed Dataset 

PLSR
b
 for Dataset 

Imputed with EM 

PLSR
b
 for Dataset 

Imputed with MCMC 

1 675.71  (6.4%) 646.47 (6.1%) 641.52  (6.1%) 

2 669.52 (5.7%) 599.75 (5.1%) 595.21 (5.0%) 

3 653.17 (5.5%) 631.33 (5.3%) 632.85 (5.3%) 

4 813.40 (6.7%) 683.28 (5.6%) 680.62 (5.6%) 

5 602.40 (5.5%) 569.42 (5.2%) 565.45 (5.1%) 
6 848.90             (6.8%) 757.78 (6.0%) 753.09 (6.0%) 

7 760.74 (7.0%) 716.93 (6.6%) 712.18 (6.5%) 
8 768.12 (6.2%) 738.68 (6.0%) 736.05 (6.0%) 
9 797.44 (6.7%) 772.14 (6.5%) 768.40 (6.4%) 
10 741.10 (6.1%) 691.85 (5.7%) 697.00 (5.8%) 

Average 733.05 (6.3%) 680.76 (5.8%) 678.24 (5.8%) 

 

 

Table 3.4  RMSEPs (kPa) and NRMSEP(%) for PLSR on Non-imputed and Imputed 

Datasets for IB Strength 

RMSEP(NRMSEP) PLSR for Non-

Imputed Dataset 

PLSR for Dataset 

Imputed with EM 

PLSR for Dataset 

Imputed with MCMC 

                1 49.64 (6.8%) 46.59 (6.4%) 45.95  (6.3%) 

                2 59.69 (8.1%) 52.61 (7.1%) 52.56 (7.1%) 

                3 55.45 (8.2%) 49.75 (7.3%) 49.78 (7.3%) 

                4 55.52 (9.1%) 47.72 (7.8%) 47.66 (7.8%) 

5 62.84 (8.9%) 57.14 (8.1%) 56.95 (8.1%) 
6 53.36             (6.9%) 49.63 (6.4%) 49.57 (6.4%) 

7 61.91 (9.0%) 53.56 (7.8%) 53.44 (7.8%) 
8 62.00 (8.7%) 53.72 (7.5%) 53.67 (7.5%) 
9 51.72 (6.5%) 45.18 (5.7%) 45.13 (5.7%) 
10 60.87 (8.3%) 56.02 (7.7%) 56.15 (7.7%) 

Average 57.30 (8.1%) 51.20 (7.2%) 51.10 (7.2%) 
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time knowledge of quality strength metrics which lead to higher than necessary targets of 

weight and resin, which also result in higher manufacturing costs and higher energy 

usage.  Higher than necessary weight targets of wood-fiber composite panels also lead to 

lower wood utilization efficiency and an unwise use of the valuable forest resource.   



26 

 

Chapter 4 

Predictive Modeling Method 
 

From the perspective of data quality, as introduced and demonstrated above, we 

showed that missing value imputation methods EM and MI produced similar imputation 

results and were the best of six potential candidate methods.  When we further used 

PLSR for prediction, models of EM-imputed and MI-imputed data produced more precise 

prediction results than models of non-imputed data did.  In this chapter, we conducted 

comparison studies from the second perspective of predictive modeling.  We selected 

four methods to model EM-imputed datasets.   

 

4.1. Data Preparation and Assessment 

Since EM method produced similar imputation results as MI using MCMC and 

took comparatively shorter time to compute, we imputed the aforementioned datasets 

using EM.  The objective was to compare predictive modeling methods in order to 

achieve better modeling results utilizing as much information as possible.  We imputed 

the original incomplete IB and MOR datasets without variable selection which had 4411 

observations and 222 predictor variables, respectively.  The reason why we chose EM 

over MCMC was because MCMC wouldn’t converge when imputing the original dataset 

without variable selection.  After imputation, we calculated VIF and created a correlation 

matrix for two complete datasets respectively to do preliminary analysis as was 

previously conducted in the study.  Many of the predictor variables were highly 

correlated.  Under multicollinearity, classical linear regression using ordinary least square 

(OLS) was not applicable for predictive modeling.     



27 

 

4.2. Modeling Methods 

In earlier studies, we used PLSR to perform predictive modeling to study the 

impact of imputation.  In this section we compare PLSR with three other modeling 

methods: Bayesian Additive Regression Trees (BART); LASSO; and Adaptive LASSO.  

When selecting from the above three modeling methods, we considered two major 

categories of methods in predictive modeling: parametric models and non-parametric 

methods (Muñoz and Felicísimo (2004)).  LASSO and Adaptive LASSO are two 

parametric methods with constraints.  As introduced in Chapter 2, LASSO is relatively 

new and has become a popular technique for variable selection and predictive modeling.  

Adaptive LASSO is a newer version of the LASSO, where adaptive weights are used to 

address certain problems of LASSO.  BART is the latest non-parametric Bayesian 

regression approach developed on the basis of traditional “regression tree” method.  All 

three methods have gained wide attention and popularity.  Since the details of LASSO 

and PLSR have been introduced in Chapters 2 and 3 respective, we will focus on BART 

and Adaptive LASSO in the following section. 

 

4.2.1. Bayesian Additive Regression Trees (BART) 

BART was proposed and developed by Chipman et al. (2006, 2010), combining 

recent advances in Bayesian modeling with regression tree idea from machine learning to 

sensibly search the potentially high-dimensional space of possible models relating the 

response to a high-dimensional predictor variables.  The BART method was suitable for 

the large-dimensional datasets of this study.   
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As suggested by the name of Bayesian Additive Regression Tree, BART consists 

of sum-of-trees model (additive model) and regularization prior (Bayesian method).  In 

the following paragraphs we briefly introduce BART from three aspects:  1) sum-of-trees 

model; 2) regularization prior; and 3) MCMC algorithm.  The following exposition 

closely follows Hill (2010) and Chipman et al. (2010). 

BART is developed from regression or classification tree models.  Tree models 

consist of binary trees with root nodes and child nodes.  As illustrated in Figure 4.1, a tree 

model of data starts from a root node “A” consisting of entire data which are defined by 

two predictor variables (   and   ) and one response variable (Y).  Then based on 

whether a predictor variable      or     , the root node is split into two branches of 

the tree, generating two child nodes (B and C).  Each child node represents a subset of the 

original data.  Child node (C) can be split again using splitting rule (     or      ) 

based on another predictor variable    into two branches to produce two more child 

nodes (D and E).  Child node (B) becomes a terminal node without any child nodes.  

When a child node becomes terminal, a parameter value (e.g.,   which represents the 

mean of the subset of data that fall in this terminal) is returned.  If the tree model is for 

prediction purpose, this returned parameter value plays the role of response (output) in a 

regression model.  The growth of this single tree eventually partitions the original dataset 

into three different regions associated with three terminal nodes and three parameter 

values (  ,   , and   ).  When this single tree model is used for prediction, depending on 

which region the values of   and    fall, a relevant parameter value   will be returned as 

prediction result.  If the   is a real number, then this single tree is called regression tree;  
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Figure 4.1  Illustration of a Single Tree Model. 

 

if the   is the class to which the data belongs, then the tree is a classification tree.  For 

details of splitting rules of tree models, please refer to Hastie et al. (2009).   

As a non-parametric method, the single-tree model is not limited to any 

parametric assumptions but suffers from a number of drawbacks (Green and Kern 

(2010)), so various methods have been developed to combine a set of single tree models.  

This combination idea is called ensemble learning in data mining/statistical learning area, 

i.e.,a predictive model is built by combining the strengths of a collection of simpler base 

models.  Ensemble learning has been embedded into various methods such as bagging 
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and boosting (Hastie et al. (2009)).  The development of BART was inspired by the 

boosting method (Chipman et al. (2010)).  For more detail on the boosting method, please 

refer to Friedman (2001).   

To further elaborate on BART, a series of concepts and notations are defined as 

follows.    The “weak learner” refers to a “weak tree” that contributes a small amount to 

the predictive capability of the overall mode in terms of low    and large RMSEP.  The 

probability that a “weak tree” makes correct classification on some predictor X is not 

significantly different or better than random guessing.  Let    denote a single tree of B 

terminal nodes,                   represent a set of parameter values associated with 

the B terminal nodes of   .  Also instead of fitting a single tree, there are now m trees in 

the model.  Function g(x;   ,   ) is defined corresponding to specific (  ,   ) which 

assigns a     to a subset of X associated with some terminal node.  Now values of 

response variable Y can be expressed as  

                                                     

 

   

                                                     

The motivation behind above “sum-of-trees model” is to improve the precision of 

modeling/prediction results and combine the results of all “weak trees” to produce a 

“powerful committee.”  After building a single “weak tree”             to fit data, 

residuals are taken as the difference between the fit from the first tree and the observed 

response values y.  Then a second “weak tree” is built to fit residuals.  New residuals are 

formed and a third “weak tree” is built to fit them.  This process is iterated until more of 

those “weak trees” eventually add up to a sum-of-trees model.  The final modeling result 
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is the sum of all trees’ terminal node parameters (  ) assigned to an observation with 

predictors X defined by            .   

However, while building more trees to improve the accuracy of modeling, the 

probability of over-fitting increases.  So the Bayesian approach using regularization 

priors is adopted to regularize the model fitting, i.e., a prior is placed on each of three 

major parameters in equation (15): the   , its terminal node parameters    , and  .  To 

simplify the prior specification, all T’s are assumed to be independent on prior and 

identically distributed (i.i.d); all  ’s of M are i.i.d given all T’s; and   are independent of 

all T’s and  ’s.  For full details on prior setting, please refer to Chipman et al. (2010).  

There is also a more concise introduction of this method in Chipman et al. (2007).   

After placing priors on parameters      , and  , a posterior distribution 

                                 is computed and sampled using Markov Chain 

Monte Carlo (MCMC).  To be specific, Gibbs sampling is used.  To demonstrate this, the 

same notation are used as in Chipman et al. (2010): let      denote all other trees in the 

sum-of-trees except   ;       denote all other terminal node parameters of other trees 

except parameters    of tree   .  As for sampling of (  ,   ), a sequence of samples from 

the joint distribution of (  ,   ) conditional on (    ,     ,  ) are drawn. Variances (     ) 

are sampled from a distribution of   conditional on all m (trees) of    and   , i.e., 

  |       ,         .  Because    follows inverse chi-square distribution, i.e., 

   
  

   
 , where degrees of freedom   and scale parameter   are defined in prior setting, 

    can be sampled using routine methods.  For details on sampling of (  ,   ), again 

please refer to Chipman et al. (2010).  Obviously,   could be identified during each 
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MCMC iteration, however, (  ,   ) are mingled together.  As summarized in Hill (2010), 

during MCMC iterations sampling parameters fitting Y in equation (15), the size of each 

of m trees may vary from iteration to iteration.  The (  ,   ) pair for one tree maybe 

switched to another tree in next time’s iteration; the contribution of a particular tree 

cannot be identified.  However due to this lack of identification, MCMC in BART could 

lead to stable and rapid computation results.  After a series of MCMC iterations (e.g., K 

iterations), a sample of K fitting results of Y, {           are formed.  To estimate or 

predict Y, the average of the sample is taken as 

                                                       
 

 
    
 
                                                                                                                    

    

4.2.2. Adaptive LASSO 

As introduced before, LASSO is a regularization technique that through shrinking 

some coefficients of predictors to zero to simultaneously achieve variable selection and 

estimation (prediction).  However, as mentioned in several previous studies such as Zou 

(2006), Leng et al. (2006), there are certain scenarios where the LASSO is inconsistent 

for variable selection.  This is especially true when there are superfluous variables and 

when prediction accuracy (e.g., using cross-validation) are used as the criteria to choose 

tuning parameter (parameter   in LASSO algorithm).  A thorough discussion and 

literature review on this topic can be found in Huang (2006).  To address this potential 

problem, Zou (2006) proposed Adaptive LASSO.  For details of deriving Adaptive 

LASSO and the proof of how Adaptive LASSO improves the consistency of variable 

selection, please refer to the original paper by Zou (2006).   The basic idea of Adaptive 
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LASSO is to apply adaptive weight vector    for penalizing different coefficients in the 

penalty term (   penalty) in original LASSO algorithm as: 

                                 

 

   

  
 

   

          

 

   

       
      

                          

In next section we discuss how the weight vector    and chose the tuning 

parameter   are obtained.   

 

4.3. Model Development 

Ten-fold cross-validation of the aforementioned EM-imputed data was performed 

to develop and compare model quality.  Take the dataset with MOR as response for 

example, the dataset was first randomly portioned into ten subsets of equal sample size 

441.  Every time one subset was retained as the validation dataset and remaining nine 

subsets were used to train the model.  This process was repeated for ten times using 

PLSR, BART, LASSO, and Adaptive LASSO, respectively.  These models were realized 

with self-written code and libraries in R (version 2.11.1).  For the details of R-code please 

refer to the coding illustrated in Appendix C 

 

4.3.1. BART Modeling 

We used library “BayesTree” in R (Chipman et al. (2006)) to develop the BART 

model.  There were two key aspects when modeling: 1) prior parameter set up; and 2) 

MCMC computation.   
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When setting parameters, we used the default settings recommended by Chipman 

et al. (2010).  When performing MCMC computation, iterations were repeated until 

satisfactory convergence was reached.  We assessed convergence by monitoring   

drawsover time.  Time series plots of   in MCMC iterations of IB and MOR data for the 

fifth validation of ten-fold cross-validation are given in Figure 4.2.  The initial parts 

where the   draws reduce rapidly represent the “burn-in” period of the Markov Chain.  

This period was not included in the average of MCMC iterations as in equation (16).  

After the   draws level off and flatten (latter part of two plots), improvement declines 

and convergence is assumed.  Based on the convergence situation of this study, 1,500 

iterations for the MOR data and 1,000 iterations for the IB data were used.   

When predicting the response in the validation dataset, each MCMC iteration 

generates a sum-of-trees model.  There were a sample of 1,500 predicted results for one 

observation in the MOR validation data and a sample of 1,000 predicted results for one 

observation in IB validation data.    An example of MCMC iteration results from the fifth 

validation for both MOR and IB data is presented in Figure 4.3.  To get the “point 

estimator” for predicted response of MOR and IB the average of each sample was taken.   

 

4.3.2. Adaptive LASSO Modeling 

Similar to the previous variable selection using LASSO (Chapter 2), we used the 

same library “lars” in R to perform the computation for the LASSO modeling process.  

The tuning parameter “ ” in equation (3) was estimated using cross-validation.  The key 

part of this technique was to apply the appropriate weight “   ” in equation (3).  When 
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doing computation, we followed the following algorithm (which is more detail than the 

one suggested in Zou (2006)): 

 First “decenter” and “scale”  all predictor variables using the method detailed 

in Appendix C coding part; 

 Perform ridge regression (refer to Hastie et al.(2009) for details on ridge 

regression) to original data to obtain model coefficients “   ”  except for the 

intercept; 

 Apply above coefficients to “standardized” predictor variables from the first 

step; 

 Perform regular LASSO using “lars” function in R to above weighted 

predictor variables and do cross-validation for tuning parameter “ ”  in 

LASSO regression; 

 Since above LASSO estimators are based on processed predictor variables, 

those estimators are “scaled” back. 

 Predictor variables with non-zero estimators as coefficients are chosen for 

prediction. 
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                                 MOR Data         

                                  

 

                                IB Data 

                               

 
 

Figure 4.2  Plots of   against Iteration Number in MCMC Computation of BART from 

the fifth validation. 

 

           MOR Data (kPa) 

 

                          IB Data (kPa) 

 
Figure 4.3  Plots of Iteration Results in MCMC Computation of BART from the fifth 

validation (Each Individual Vertical Line Represents 1,000/1,500 Predicted Results for 

One Individual Response Y in Validation Dataset; Each Dot Represents the Average of 

1,000/1,500 Iteration Results). 
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In the original paper about Adaptive LASSO, Zou (2006) suggested using 

coefficients of ordinary least squares (OLS) regression as adaptive weights for most of 

occasions.  However, considering the multicollinearity of our data, we chose ridge 

regression as another alternative approach to obtain weights.   

 

4.4. Model Comparison  

In comparing modeling results, we used RMSEP, Normalized RMSEP 

(NRMSEP), and Coefficient of Variation of RMSEP or CV (RMSEP). To evaluate the 

model fitting of BART, PLSR, LASSO, and Adaptive LASSO for EM-imputed data of 

MOR and IB, we also plotted predicted MOR and IB against actual MOR and IB from 

ten-fold cross-validation for the four methods, respectively.  The third validation for four 

models of MOR and IB data are given in Figures 4.4 and 4.5.  The remaining plots of 

MOR and IB data are presented in Appendix B.   

Less dispersion of the plots of BART models of both MOR and IB data 

represents better prediction precision than the other three models.  We also calculated the 

correlation coefficient (r) between the true values and predicted values to demonstrate the 

level of the correlation between the two.  As noted in figures of plots, values of r larger 

and closer to 1 indicate stronger positive linear relationship, which implies that BART 

models or MOR data (r = 0.92) and IB data (r = 0.83) outperformed other three methods.  

Smaller RMSEPs of BART models in both figures are also exemplified.   
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A complete comparison of the four methods in terms of RMSEP, NRMSEP, CV 

(RMSEP), and correlation coefficient (r) across ten validations is given in Tables 4.1, 4.2, 

4.3, and 4.4..   

The comparison results for models of MOR data in Tables 4.1 and 4.2 suggest 

that BART produce best prediction results for eight of the ten validations. BART had the 

smallest average RMSEP (965.75 kPa), average NRMSEP (7.1%), and average CV 

(RMSEP) (7.7%). Smallest NRMPSEP and CV imply that prediction performance of 

BART has the least variation and is more consistent than other methods.  

Correspondingly, the BART model had the largest correlation coefficient for eight of the 

ten validations (average r = 0.91).  Although there is notable gap compared with the 

prediction performance of BART, PLSR is the second best method with the smallest 

RMSEP (average 1005.83 kPa), NRMSEP (average 7.3%), and CV (RMSEP) (average 

8.1%) for two of the ten validations.  PLSR also has largest correlation coefficient 

(average r = 0.90) for two of the validations.  There is no apparent difference in 

prediction performance between LASSO and Adaptive LASSO models.  LASSO models 

appear to be slightly better (average RMSEP = 1,073.89 kPa) than Adaptive LASSO 

(average RMSEP = 1,077.19 kPa).    

The comparison results for models of IB data in Tables 4.3 and 4.4 show similar 

results.  Overall, BART has the best prediction performance, with the smallest RMSEP 

(average of 76.79 kPa), NRMSEP (average of 8.6%), CV (RMSEP) (13.1%) and the 

largest correlation coefficient (average of 0.83).  For seven of the ten validations, BART 

outperformed the other three modeling methods.   
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Figure 4.4  Plots of Predicted MOR (kPa) versus Actual MOR (kPa) for Four Models 

from the 3
rd

 Validation of 10-fold Cross-Validation. 
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Figure 4.5  Plots of Predicted IB (kPa) versus Actual IB (kPa) for Four Models from the 

3
rd

 Validation of 10-fold Cross-Validation. 
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However, BART is only slightly better than PLSR model with average RMSEP of 

77.07 kPa, NRMSEP of 8.9%, CV (RMSEP) of 13.2%.  The PLSR model also has the 

same average correlation coefficient 0.83 as the BART model.  Comparatively, prediction 

results of BART and PLSR models are apparently better than results of LASSO and 

Adaptive LASSO models.  There is still no notable performance difference between 

LASSO (average RMSEP = 84.11) and Adaptive LASSO (average RMSEP = 83.79).  

Adaptive LASSO is slightly more precise.  Since the BART method is relatively new, the 

literature on the application of BART is sparse.  We noted similar results and remarks on 

the superior performance of BART than for other methods as noted in Chipman et al. 

(2006),  Hill (2010), Green and Kern (2010). 

 Adaptive LASSO and LASSO didn’t improve model quality.  Their performance 

may suffer from the multicollinearity of the datasets.  Zou (2006) brought up the concern 

on collinearity and suggested trying ridge regression when fitting Adaptive LASSO for 

more stable results.  Although we did so to compensate for better consistency of 

prediction, the precision of models did not improve.  The method of ten-fold cross-

validation that we used to choose the tuning parameter ( ) may also have affected the 

results of LASSO and Adaptive LASSO, as documented in Leng et al. (2006), and 

Martinez et al. (2010).  
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Table 4.1 RMSEPs (kPa) and NRMSEP(%) of 10-fold Cross-validation of BART, 

PLSR, LASSO, and Adaptive LASSO Modeling of MOR Strength 

RMSEP 

(NRMSEP) 

BART PLSR LASSO Adaptive LASSO 

1 1069.15 (8.4%) 1096.71 (8.6%) 1165.56 (9.1%) 1195.96 (9.4%) 

2 920.30 (7.0%) 1106.70 (8.2%) 1060.02 (7.9%) 1160.76 (8.6%) 

3 950.86 (7.0%) 1016.03 (7.5%) 1047.66 (7.7%) 1049.11 (7.7%) 

4 1032.70 (7.6%) 1010.63 (7.5%) 1166.05 (8.6%) 1086.44 (8.0%) 

5 971.58 (7.2%) 1016.04 (6.8%) 1048.19 (7.7%) 1047.62 (7.7%) 

6 917.05 (6.7%) 925.14 (6.8%) 963.87 (7.1%) 941.71 (6.9%) 

7 956.86 (6.9%) 970.35 (7.0%) 1079.19 (7.8%) 1078.68 (7.8%) 

8 881.62 (6.3%) 967.43 (7.0%) 998.49 (7.2%) 1045.33 (7.6%) 

9 897.59 (6.2%) 952.96 (6.6%) 1093.91 (7.6%) 1056.30 (7.4%) 

10 1059.80 (7.8%) 996.30 (7.3%) 1115.92 (8.2%) 1109.93 (8.2%) 

Average 965.75 (7.1%) 1005.83 (7.3%) 1073.89 (7.9%) (1077.19) (7.9%) 

 

 

Table 4.2  Correlation and CV(RMSEP) of 10-fold Cross-validation of BART, PLSR, 

LASSO, and Adaptive LASSO Modeling of MOR Strength 

Correlation 

(CV) 

BART PLSR LASSO Adaptive 

LASSO 

1 0.90 (8.6%) 0.89 (8.8%) 0.88 (9.3%) 0.88 (9.6%) 

2 0.92 (7.3%) 0.88 (8.8%) 0.90 (8.8%) 0.88 (9.2%) 

3 0.92 (7.6%) 0.90 (8.1%) 0.90 (8.4%) 0.90 (8.4%) 

4 0.91 (8.2%) 0.91 (8.1%) 0.88 (9.3%) 0.90 (8.7%) 

5 0.91 (7.8%) 0.90 (8.1%) 0.90 (8.4%) 0.90 (8.4%) 

6 0.90 (7.2%) 0.90 (7.3%) 0.89 (7.6%) 0.90 (7.4%) 

7 0.91 (7.6%) 0.91 (7.9%) 0.88 (8.6%) 0.88 (8.6%) 

8 0.93 (7.1%) 0.91 (7.8%) 0.91 (8.0%) 0.90 (8.4%) 

9 0.93 (7.1%) 0.92 (7.6%) 0.89 (8.7%) 0.90 (8.4%) 

10 0.91 (8.5%) 0.92 (7.9%) 0.90 (8.9%) 0.90 (8.9%) 

Average 0.91 (7.7%) 0.90 (8.1%) 0.89 (8.6%) 0.89 (8.90%) 
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Table 4.3  RMSEPs (kPa) and NRMSEP(%) of 10-fold Cross-validation of BART, 

PLSR, LASSO, and Adaptive LASSO Modeling of IB Strength 

RMSEP(NRMSEP) BART PLSR LASSO Adaptive 

LASSO 

1 74.9 (7.8%) 73.6 (7.7%) 80.06 (8.4%) 80.15 (8.4%) 

2 80.91 (7.0%) 75.50 (7.8%) 85.08 (8.7%) 83.34 (8.5%) 

3 78.64 (8.6%) 75.49 (8.5%) 85.63 (9.4%) 86.65 (9.5%) 

4 76.19 (8.4%) 77.53 (8.5%) 84.11 (9.2%) 82.69 (9.0%) 

5 77.22 (9.2%) 78.19 (9.3%) 86.84 (10.0%) 86.18 (10%) 

6 81.90 (11%) 82.35 (11%) 87.27 (12%) 89.14 (12%) 

7 73.59 (9.3%) 75.63 (9.6%) 80.69 (10.2%) 80.27 (10.1%) 

8 70.63 (7.6%) 74.69 (8.0%) 84.57 (10.9%) 84.11 (10.6%) 

9 75.14 (8.6%) 76.19 (8.7%) 85.08 (9.7%) 83.97 (9.6%) 

10 78.84 (9.1%) 81.53 (9.4%) 81.76 (9.4%) 81.42 (9.3%) 

Average 76.79 (8.6%) 77.07 (8.9%) 84.11 (9.8%) 83.79 (9.7%) 

 

 

Table 4.4  Correlation and CV(RMSEP) of 10-fold Cross-validation of BART, PLSR, 

LASSO, and Adaptive LASSO Modeling of IB Strength 

Correlation 

(CV) 

BART PLSR LASSO Adaptive 

LASSO 

1 0.82 (12.6%) 0.83 (12.4%) 0.79 (13.4%) 0.79 (13.5%) 

2 0.82 (13.9%) 0.85 (13.0%) 0.80 (14.6%) 0.81 (14.3%) 

3 0.82 (13.6%) 0.83 (13.5%) 0.78 (14.9%) 0.78 (15%) 

4 0.85 (13.2%) 0.84 (13.4%) 0.81 (14.7%) 0.82 (14.3%) 

5 0.84 (13.1%) 0.83 (13.3%) 0.80 (14.6%) 0.80 (14.6%) 

6 0.82 (14.3%) 0.81 (14.4%) 0.79 (15.2%) 0.78 (15.6%) 

7 0.83 (12.5%) 0.82 (12.9%) 0.79 (13.7%) 0.80 (13.6%) 

8 0.85 (11.8%) 0.83 (12.5%) 0.80 (13.0%) 0.80 (12.9%) 

9 0.85 (12.7%) 0.84 (12.9%) 0.79 (14.4%) 0.80 (14.2%) 

10 0.82 (13.4%) 0.80 (14.0%) 0.80 (14.0%) 0.80 (13.9%) 

Average 0.83 (13.1%) 0.83 (13.2%) 0.80 (14.3%) 0.80 (14.2%) 
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Chapter 5  

Conclusion and Recommendation 
 

This thesis research addressed two aspects of predictive modeling of strength 

properties of wood composites.  The first was the missing data problem (data quality) and 

the second was selection of predictive modeling methods. 

Study results for the first part of thesis on missing data imputation indicated that  

data imputation and variable selection based on the LASSO method prior to the 

development of partial least squares regression (PLSR) predictive models for MOR and 

IB strength properties greatly improved model performance.  The LASSO method for 

variable selection prior to data imputation has certain advantages over other methods 

(e.g., principal component analysis (PCA) and genetic algorithm (GA)) as indicated by 

study results.  In this study multiple imputation (MI) with MCMC and maximum 

likelihood method using the EM algorithm outperformed other imputation methods such 

as mean/median substitution, simple random imputation, or last-observation-carried-

forward method.  PLSR models developed from EM and MI imputed data had better 

model performance than PLSR models developed from non-imputed data.   

The second part of thesis compared four predictive modeling methods: Bayesian 

Additive Regression Tree (BART), PLSR, LASSO, and Adaptive LASSO.  The BART 

method provided best performance over other three methods in predicting MOR and IB.  

The relative short computation time (20 to 25 minutes in CPU time) spent on BART 

demonstrated the applicability of the method in real-time industrial settings.  The PLSR 
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method was the second best prediction method.  There was no notable difference in 

model performance between the LASSO and Adaptive LASSO methods.   

Given the difficulties associated with the missing data problem and predictive 

model selection common to industrial settings, this thesis study demonstrated the value of 

LASSO variable selection with data imputation for PLSR predictive models of the 

strength quality metrics for wood composites.  Such predictive models with imputation 

may also help practitioners understand sources of process variation and reduce overall 

manufacturing costs.   

Predictive models of strength properties using BART for manufacturing settings 

may help practitioners maintain product quality specification and prevent claim costs. 

Accurate real-time predictive models may also discourage operational practices of 

running higher than necessary feedstock targets.  
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Chapter 6  

Future Research 
 

Future research topics originating from current study may be plentiful.  Three 

future possible research topics are presented as part of this thesis. 

First, missing data imputation and predictive modeling using BART may be 

expanded beyond wood composite manufacturing and also a real-time data test in a 

manufacturing mill seems plausible.  Applications of this study for other manufacturing 

areas (e.g., paper, aluminum, steel, etc.) appear to be a logical extension of the research.  

Such an extension would greatly benefit practitioners interested in continuous 

improvement using statistical methods. New avenues of research may include the use of 

BART with larger datasets than the ones used in this research. 

A second research topic will be to improve the interpretation of BART models.  

Currently some literature is available on BART model interpretation (Chipman et al. 

(2010)).  However, for BART models to be more beneficial for the practitioner for 

continuous improvement, prioritizing key predictor variables of the process are needed. 

A third potential research topic is the choice of the tuning parameter λ for the 

LASSO and Adaptive LASSO methods.  The choice of “fold” in v-cross-validation also 

affects LASSO and Adaptive LASSO modeling results and requires further investigation.  

Further extensive simulation studies to explore these areas are planned.   
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Appendix A 

Appendix A.1. 

Ten-fold Cross-validation of PLRS Modeling of Imputed and Non-imputed MOR 

Data 
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Appendix A.2.   

Ten-fold Cross-validation Results of PLRS Modeling of Imputed and Non-imputed 

IB Data 
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7
th

 Cross-validation of PLSR Model of IB Data 
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 Cross-validation of PLSR Model of IB Data  
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10
th

 Cross-validation of PLSR Model of IB Data 
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Appendix B 
Appendix B.1.   

Ten-fold Cross-validation of BART, PLSR, LASSO, and Adaptive LASSO Models 

Using MOR Data 

1
st
 Cross-validation of Four Models of MOR data 
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 Cross-validation of Four Models of MOR data 
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3
rd

 Cross-validation of Four Models of MOR data 
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4
th

 Cross-validation of Four Models of MOR data 

  

  
5

th
 Cross-validation of Four Models of MOR data 
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6
th

 Cross-validation of Four Models of MOR data 
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th

 Cross-validation of Four Models of MOR data 
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th

 Cross-validation of Four Models of MOR data 
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9
th

 Cross-validation of Four Models of MOR data 

  

  
 

10
th

 Cross-validation of Four Models of MOR data 
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Appendix B.2.   

Ten-fold Cross-validation of BART, PLSR, LASSO, and Adaptive LASSO Models 

Using IB Data 
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 Cross-validation of Four Models of IB data 
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