212 research outputs found

    An Accelerated Stochastic ADMM for Nonconvex and Nonsmooth Finite-Sum Optimization

    Full text link
    The nonconvex and nonsmooth finite-sum optimization problem with linear constraint has attracted much attention in the fields of artificial intelligence, computer, and mathematics, due to its wide applications in machine learning and the lack of efficient algorithms with convincing convergence theories. A popular approach to solve it is the stochastic Alternating Direction Method of Multipliers (ADMM), but most stochastic ADMM-type methods focus on convex models. In addition, the variance reduction (VR) and acceleration techniques are useful tools in the development of stochastic methods due to their simplicity and practicability in providing acceleration characteristics of various machine learning models. However, it remains unclear whether accelerated SVRG-ADMM algorithm (ASVRG-ADMM), which extends SVRG-ADMM by incorporating momentum techniques, exhibits a comparable acceleration characteristic or convergence rate in the nonconvex setting. To fill this gap, we consider a general nonconvex nonsmooth optimization problem and study the convergence of ASVRG-ADMM. By utilizing a well-defined potential energy function, we establish its sublinear convergence rate O(1/T)O(1/T), where TT denotes the iteration number. Furthermore, under the additional Kurdyka-Lojasiewicz (KL) property which is less stringent than the frequently used conditions for showcasing linear convergence rates, such as strong convexity, we show that the ASVRG-ADMM sequence has a finite length and converges to a stationary solution with a linear convergence rate. Several experiments on solving the graph-guided fused lasso problem and regularized logistic regression problem validate that the proposed ASVRG-ADMM performs better than the state-of-the-art methods.Comment: 40 Pages, 8 figure

    Parameter Optimization of a Discrete Scattering Model by Integration of Global Sensitivity Analysis Using SMAP Active and Passive Observations

    Get PDF
    Active and passive microwave signatures respond differently to the land surface and provide complementary information on the characteristics of the observed scenes. The objective of this paper is to explore the synergy of active radar and passive radiometer observations at the same spatial scale to constrain a discrete radiative transfer model, the Tor Vergata (TVG) model, to gain insights into the microwave scattering and emission mechanisms over grasslands. The TVG model can simultaneously simulate the backscattering coefficient and emissivity with a set of input parameters. To calibrate this model, in situ soil moisture and temperature data collected from the Maqu area in the northeastern region of the Tibetan Plateau, interpolated leaf area index (LAI) data from the Moderate Resolution Imaging Spectroradiometer LAI eight-day products, and concurrent and coincident Soil Moisture Active Passive (SMAP) radar and radiometer observations are used. Because this model needs numerous input parameters to be driven, the extended Fourier amplitude sensitivity test is first applied to conduct global sensitivity analysis (GSA) to select the sensitive and insensitive parameters. Only the most sensitive parameters are defined as free variables, to separately calibrate the active-only model (TVG-A), the passive-only model (TVG-P), and the active and passive combined model (TVG-AP). The accuracy of the calibrated models is evaluated by comparing the SMAP observations and the model simulations. The results show that TVG-AP can well reproduce the backscattering coefficient and brightness temperature, with correlation coefficients of 0.87, 0.89, 0.78, and 0.43 and root-mean-square errors of 0.49 dB, 0.52 dB, 7.20 K, and 10.47 K for σ HH⁰ , σ VV⁰ , TBH, and TBV, respectively. In contrast, TVG-A and TVG-P can only accurately model the backscattering coefficient and brightness temperature, respectively. Without any modifications of the calibrated parameters, the error metrics computed from the validation data are slightly worse than those of the calibration data. These results demonstrate the feasibility of the synergistic use of SMAP active radar and passive radiometer observations under the unified framework of a physical model. In addition, the results demonstrate the necessity and effectiveness of applying GSA in model optimization. It is expected that these findings can contribute to the development of model-based soil moisture retrieval methods using active and passive microwave remote sensing data

    Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

    Get PDF
    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG) ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.11248Ysciescopu

    Changes of serum cortisol during pregnancy and labor initiation: an onsite cross-sectional study

    Get PDF
    BackgroundIncreased maternal cortisol secretion has been observed during pregnancy and labor. However, due to the limitations in diagnostic methods, the dynamic change of cortisol during the short period between threatened labor and labor is unknown. In this study, we aim to evaluate the changes in serum cortisol during late pregnancy and full-term labor initiation, verifying if cortisol could serve as a biomarker for the diagnosis of labor initiation from threatened labor.MethodsThis cross-sectional onsite study involved 564 participants of 6 different gestational stages (C: Control; T1: Trimester 1; T3: Trimester 3; E: expectant; TL: threatened labor; L: labor), all patients in the E, TL, and L groups were at full term. The serum cortisol concentration was quantified with a point-of-care test (POCT), and the gestation, age, parity, and BMI of participants were documented. Morning serum cortisol was collected between 8:00 and 10:00 a.m., except for the TL and L group women who were tested upon arrival or during latent labor. With cortisol levels or all five variables, L was distinguished from TL using machine learning algorithms.ResultsSignificant elevation of cortisol concentration was observed between T1 and T3, or TL and L group (P< 0.001). Women belonging to the E and TL group showed similar gestation week and cortisol levels. Diagnosis of labor initiation using cortisol levels (cutoff = 21.46 μg/dL) yielded sensitivity, specificity, and AUC of 86.50%, 88.60%, and 0.934. With additional variables, a higher specificity (89.29%) was achieved. The diagnostic accuracy of all methods ranged from 85.93% to 87.90%.ConclusionSerum cortisol could serve as a potential biomarker for diagnosis of L form TL. The rapid onsite detection of serum cortisol with POCT could facilitate medical decision-making for admission and special treatments, either as an additional parameter or when other technical platforms are not available

    Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs)

    Get PDF
    Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome.National Key Scientific Program of China [2011CB944303]; National Nature Science Foundation of China [31271244, 31471344]; Promotion Program for Shenzhen Key Laboratory [CXB201104220045A]; Shenzhen Project of Science and Technology [JCYJ20130402113131202, JCYJ20140415162543017]SCI(E)[email protected]; [email protected]; [email protected]

    Association between a metabolic score for insulin resistance and hypertension: results from National Health and Nutrition Examination Survey 2007–2016 analyses

    Get PDF
    BackgroundThe Metabolic Score for Insulin Resistance (METS-IR) offers a promising and reliable non-insulin-based approach to assess insulin resistance and evaluate cardiometabolic risk. However, evidence for the association between METS-IR and hypertension was still limited.MethodsParticipants from the National Health and Nutrition Examination Survey (NHANES) database from 2007-2016 were selected for weighted multivariable regression analyses, subgroup analyses and restricted cubic spline (RCS) modeling to assess the association between the METS-IR and hypertension, as well as systolic blood pressure (SBP) and diastolic blood pressure (DBP).ResultsThis study enrolled 7,721 adults aged ≥20 years, 2,926 (34.03%) of whom was diagnosed as hypertension. After adjusting for all potential covariates, an increased METS-IR (log2 conversion, denoted as log2METS-IR) was independently associated with a higher prevalence of hypertension (odd ratio [OR] 3.99, 95% confidence interval [CI] 3.19~5.01). The OR for hypertension in subjects with the highest quartile of METS-IR was 3.89-fold (OR 3.89, 95% CI 3.06~4.94) higher than that in those with the lowest quartile of METS-IR. This positive correlation became more significant as METS-IR increased (p for trend < 0.001). Log2METS-IR was significantly correlated with increase in SBP (β 6.75, 95% CI 5.65~7.85) and DBP (β 5.59, 95% CI 4.75~6.43) in a fully adjusted model. Consistent results were obtained in subgroup analyses. Hypertension, SBP and DBP all exhibited a non-linear increase with the rise in METS-IR. The minimal threshold for the beneficial association of METS-IR with hypertension, SBP and DBP were all identified to be 46.88.ConclusionThe findings of this study revealed a significant positive association between METS-IR and hypertension among US adults, suggesting METS-IR as a potential tool for assessing hypertension risk
    corecore