24,027 research outputs found
Aggregating pairwise semantic differences for few-shot claim verification
We introduce SEED, a novel vector-based method to few-shot claim verification that aggregates pairwise semantic differences for claim-evidence pairs
Critical Current Density and Resistivity of MgB2 Films
The high resistivity of many bulk and film samples of MgB2 is most readily
explained by the suggestion that only a fraction of the cross-sectional area of
the samples is effectively carrying current. Hence the supercurrent (Jc) in
such samples will be limited by the same area factor, arising for example from
porosity or from insulating oxides present at the grain boundaries. We suggest
that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K)
- Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We
report measurements of Rho(T) and Jc for a number of films made by hybrid
physical-chemical vapor deposition which demonstrate this correlation, although
the "reduced effective area" argument alone is not sufficient. We suggest that
this argument can also apply to many polycrystalline bulk and wire samples of
MgB2.Comment: 11 pages, 3 figure
The Degasperis-Procesi equation with self-consistent sources
The Degasperis-Procesi equation with self-consistent sources(DPESCS) is
derived. The Lax representation and the conservation laws for DPESCS are
constructed. The peakon solution of DPESCS is obtained.Comment: 15 page
Multiscale modeling of combined deterministic and stochastic fabric non-uniformity for realistic resin injection simulation
The local fiber arrangement in a bi-directional fabric formed to a complex shape was modeled considering the stochastic arrangement of filaments within yarns, which determines axial and transverse yarn permeabilities, and the stochastic arrangement of yarns in a fabric, which determines the dimensions of interyarn gap spaces locally. To mimic the uncertainty in fabric forming, drape simulation was randomized in terms of start point and yarn start orientations. From yarn permeabilities and simulated local yarn spacing distributions, local fiber volume fractions and fabric permeabilities were approximated. This allowed resin injection into a deformed fabric to be simulated for different drape scenarios with different probabilities and different degrees of fabric randomness. The results indicate that variability in fabric properties and the forming process affects flow front shapes and times for complete impregnation of the reinforcement
Automated fact-checking: A survey
As online false information continues to grow, automated fact-checking has gained an increasing amount of attention in recent years. Researchers in the field of Natural Language Processing (NLP) have contributed to the task by building fact-checking datasets, devising automated fact-checking pipelines and proposing NLP methods to further research in the development of different components. This article reviews relevant research on automated fact-checking covering both the claim detection and claim validation components
Time After Time: Notes on Delays In Spiking Neural P Systems
Spiking Neural P systems, SNP systems for short, are biologically inspired
computing devices based on how neurons perform computations. SNP systems use
only one type of symbol, the spike, in the computations. Information is encoded
in the time differences of spikes or the multiplicity of spikes produced at
certain times. SNP systems with delays (associated with rules) and those
without delays are two of several Turing complete SNP system variants in
literature. In this work we investigate how restricted forms of SNP systems
with delays can be simulated by SNP systems without delays. We show the
simulations for the following spike routing constructs: sequential, iteration,
join, and split.Comment: 11 pages, 9 figures, 4 lemmas, 1 theorem, preprint of Workshop on
Computation: Theory and Practice 2012 at DLSU, Manila together with UP
Diliman, DLSU, Tokyo Institute of Technology, and Osaka universit
Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints
The Davey-Stewartson I equation is a typical integrable equation in 2+1
dimensions. Its Lax system being essentially in 1+1 dimensional form has been
found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the
present paper, this essentially 1+1 dimensional Lax system is further
nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann
constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems
are completely integrable in Liouville sense by finding a full set of integrals
of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001
Observation of orbital ordering and origin of the nematic order in FeSe
To elucidate the origin of nematic order in FeSe, we performed
field-dependent 77Se-NMR measurements on single crystals of FeSe. We observed
orbital ordering from the splitting of the NMR spectra and Knight shift and a
suppression of it with magnetic field B0 up to 16 T applied parallel to the
Fe-planes. There is a significant change in the distribution and magnitude of
the internal magnetic field across the orbital ordering temperature Torb while
stripe-type antiferromagnetism is absent. Giant antiferromagnetic (AFM) spin
fluctuations measured by the NMR spin-lattice relaxation are gradually
developed starting at ~ 40 K, which is far below the nematic ordering
temperature Tnem. These results demonstrate that orbital ordering is the origin
of the nematic order, and the AFM spin fluctuation is the driving mechanism of
superconductivity in FeSe under the presence of the nematic order.Comment: 6 pages, 4 figure
Hole Doping Dependence of the Coherence Length in Thin Films
By measuring the field and temperature dependence of magnetization on
systematically doped thin films, the critical current
density and the collective pinning energy are determined in
single vortex creep regime. Together with the published data of superfluid
density, condensation energy and anisotropy, for the first time we derive the
doping dependence of the coherence length or vortex core size in wide doping
regime directly from the low temperature data. It is found that the coherence
length drops in the underdoped region and increases in the overdoped side with
the increase of hole concentration. The result in underdoped region clearly
deviates from what expected by the pre-formed pairing model if one simply
associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure
PLCγ1 promotes phase separation of T cell signaling components.
The T cell receptor (TCR) pathway receives, processes, and amplifies the signal from pathogenic antigens to the activation of T cells. Although major components in this pathway have been identified, the knowledge on how individual components cooperate to effectively transduce signals remains limited. Phase separation emerges as a biophysical principle in organizing signaling molecules into liquid-like condensates. Here, we report that phospholipase Cγ1 (PLCγ1) promotes phase separation of LAT, a key adaptor protein in the TCR pathway. PLCγ1 directly cross-links LAT through its two SH2 domains. PLCγ1 also protects LAT from dephosphorylation by the phosphatase CD45 and promotes LAT-dependent ERK activation and SLP76 phosphorylation. Intriguingly, a nonmonotonic effect of PLCγ1 on LAT clustering was discovered. Computer simulations, based on patchy particles, revealed how the cluster size is regulated by protein compositions. Together, these results define a critical function of PLCγ1 in promoting phase separation of the LAT complex and TCR signal transduction
- …