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Abstract 

The local fibre arrangement in a bi-directional fabric formed to a complex shape was 

modelled considering the stochastic arrangement of filaments within yarns, which determines 

axial and transverse yarn permeabilities, and the stochastic arrangement of yarns in a fabric, 

which determines the dimensions of inter-yarn gap spaces locally. To mimic the uncertainty 

in fabric forming, drape simulation was randomised in terms of start point and yarn start 

orientations. From yarn permeabilities and simulated local yarn spacing distributions, local 

fibre volume fractions and fabric permeabilities were approximated. This allowed resin 

injection into a deformed fabric to be simulated for different drape scenarios with different 

probabilities and different degrees of fabric randomness. The results indicate that variability 

in fabric properties and the forming process affects flow front shapes and times for complete 

impregnation of the reinforcement.  
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1 Introduction 

In manufacture of polymer composite components employing Liquid Composite 

Moulding (LCM) processes, a fibrous reinforcement, preformed to the shape of the 

component, is impregnated with a liquid resin system. The impregnation is frequently 

modelled as flow of a viscous liquid through a porous medium, characterised by its porosity 

and permeability. Prediction of resin flow scenarios is straightforward if reinforcement 

porosity and permeability are uniform. However, in real reinforcements these properties 

typically show some degree of non-uniformity. For the most common type of reinforcement, 

bi-directional fabrics, two types of non-uniformity can be distinguished: 

• Deterministic non-uniformity is related to the effect of drape, i.e. (localised) shear when 

the reinforcement is formed to a doubly-curved surface.  

• Stochastic non-uniformity is related to material-inherent variability in the fabric structure, 

which is present even in undeformed flat fabric layers.  

Due to both types of reinforcement non-uniformity, resin flow patterns and impregnation 

times in LCM-processing of actual components are hard to predict. Eventually, 

uncontrollable flow may result in incomplete impregnation and defect formation. 

Regarding deterministic fabric non-uniformity, the mechanics of fabric drape [1,2], 

simulation of drape [3], and the effect of drape on the (local) fabric permeability [4-7] are 

discussed extensively in the literature. To address the issue of variability in resin flow 

patterns caused by stochastic local variations in fibre orientation and fibre volume fraction, 

Lundström et al. [8] derived non-uniform local fabric permeability values from variable 

dimensions of inter-yarn flow channels. This intrinsic non-uniformity of fabrics is related to 

the yarn mobility, which is determined by the fabric architecture [9]. The effect of random 

nesting may also contribute significantly if multiple fabric layers are used as reinforcement 

[10].  
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In a stochastic fabric model implemented by the authors [11], continuously varying yarn 

spacing was described by continuous functions with random parameters, which were related 

to experimentally quantified fibre angle variations in undeformed fabrics. These allowed 

local fabric properties to be derived as input for resin injection simulations. From the 

simulation results, probable outcomes of resin injections were deduced for flat textiles with 

non-uniform properties. Predicted flow front shapes were in qualitative agreement with 

experimental observations, and global permeabilities and permeabiliy variations, predicted 

based on series of simulations, were found to be in the order of magnitude of typical 

experimental results. 

In this study, resin injection into preforms with arbitrary complex geometry is simulated 

based on local fabric permeability fields, which are modelled by combining drape simulation 

with the following stochastic effects: 

• at the micro-scale: random arrangement of filaments in yarns; 

• at the meso-scale: random variations in local yarn spacing in unsheared fabric; 

• at the macro-/meso-scale: variability in forming start point and yarn start orientations, 

determining yarn paths and shear angles. 

The aim is to predict typical resin injection scenarios for reinforcements with realistic non-

uniformity in order to optimise process parameters for production of composite components 

applying LCM-technology, in particular location of injection gates and vents in the mould to 

achieve complete impregnation, i.e. high quality, of finished components. 

 

2 Fabric modelling 

2.1 General approach 

To model the local meso-scale structure in a non-uniform draped fabric, fabric drape 

simulation and randomisation of the yarn spacing are combined. Fabric shear and random 
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yarn waviness both affect the local yarn spacing and hence are competing effects. In 

unsheared flat bi-directional fabrics, measured angles between warp- and weft-yarns were 

found to be normally distributed [12] reflecting some degree of in-plane yarn waviness. This 

is related to continuous variations in local yarn spacing along each fabric direction. When the 

fabric is sheared, the (average) yarn spacing is reduced, which results in a reduction in yarn 

mobility. Where adjacent wavy yarns are in contact with each other locally, lateral forces 

straighten the yarns, thus reducing variability in the fabric structure. This implies that warp- 

and weft-yarns slide over each other (with friction) in the cross-over points, i.e. the distance 

between cross-over points changes. Forming of a fabric showing this type of behaviour was 

simulated by Skordos and Sutcliffe, who modelled a bi-directional fabric with stochastic 

geometrical parameters and then calculated local deformation employing a non-linear finite 

element method [13]. This approach reproduces the behaviour of the fabric accurately, but 

implies a complex and computationally expensive solution procedure.  

Here, a kinematic pin-jointed net approach is employed to reduce the computational cost 

for forming simulation. Since a pin-jointed net model requires uniform edge length in the 

draped net [14], in a first step, drape is simulated for an idealised uniform fabric. Fabric 

randomisation is then applied based on the local residual inter-yarn gap width derived from 

the drape simulation. This allows the mechanics of yarn slippage in cross-over points to be 

ignored to reduce the complexity of the forming problem. Since drape and randomisation 

both affect yarn spacing in the same way, inversion of the sequence appears admissible. 

In addition to fabric non-uniformity, the uncertainty in initial conditions for the fabric 

forming process is considered here. Thus, the proposed approach for LCM process simulation 

implies the following steps: 

1. Discretisation of the geometry of the finished component into finite elements 

2. Randomisation of the initial conditions for drape simulation 
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3. Drape simulation employing a “pin-jointed net” method 

4. Randomisation of local fabric properties (according to outcome of drape simulation) 

5. Calculation of the local permeability field 

6. Resin injection simulation employing a finite element (Darcy) solver 

 

2.2 Randomised drape simulation 

Forming of bi-directional fabrics was simulated using the kinematic code DrapeIt, which 

was developed at Nottingham University. Based on a geometrical model of the finished 

component, represented by a doubly-curved surface consisting of triangular flat patches 

(which coincide with the finite elements for flow simulation), a pin-jointed net approach is 

implemented. This implies that start point and start directions for yarns in both fabric 

directions are set, and two seed yarn paths are generated by projection onto the surface (along 

the global co-ordinate z-axis), separating the geometry into four quadrants [15]. Connected 

yarn segments with fixed length, corresponding to the spacing between yarn cross-over 

points, are placed sequentially on the geometry to populate each quadrant.  

Outputs of the drape simulation are  

• two vectors, ewarp and eweft, for each surface patch (finite element), indicating local fabric 

warp- and weft-directions, 

• co-ordinates of yarn cross-over points (Fig. 1), which are indexed by positive integers, i 

and j, in each quadrant of the drape geometry relative to the start point at (0, 0).  

To mimic the uncertainty in placing a dry reinforcement in a tool as start for the following 

deterministic forming process, which was studied by Elkington et al. [16] for manual prepreg 

lay-up but occurs similarly in automated prefoming processes, the drape simulation was 

randomised in terms of start point and yarn start orientations. For a given target start point 

and target start orientations, the angle between the fabric warp- and weft- direction at the start 
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point is assumed to be 90, and the yarn start orientations are assumed to be normally 

distributed around the target orientation (0). In addition, the distance between the target start 

point and the actual start point, projected onto a plane normal to the direction of fabric 

deposition onto the actual surface, is assumed to be normally distributed. The probability for 

the actual start point to be found is equal in any direction relative to the target start point.  

If the fabric is formed by applying a force along the global co-ordinate z-axis, this 

assumption can be formulated in terms of the probability for the start point to be found in the 

surface element dAxy at a position (x,y) in the x-y-plane, 
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where x is the standard deviation of the normal distribution. Since the orientation of a 

surface element, dA, anywhere on the geometry can be described by the angle  included by 

the surface normal vectors in dA and in the target start point, dAxy and dA are correlated via  

 cosdAdAxy =   . (2) 

Thus, the probability, dP, for the start point to be found in the surface element dA anywhere 

on the geometry can be obtained by substituting Eq. (2) into Eq. (1) and introducing a 

corrective factor to take into account the total surface area of the geometry. Effectively, the 

probability decreases not only with increasing distance from the target start point, but also 

with increasing angle between the local surface normal and the surface normal in the target 

start point.      

For the following calculations of the local permeability, it is assumed that the angle 

between both yarn directions in the original unsheared fabric, 0, is 90. The yarn spacing, 

A0, and yarn dimensions, described by the original in-plane yarn halfwidth of the unsheared 

fabric, Rp, are assumed to be identical in both fabric directions. For each triangular finite 

element for flow simulation, the local fibre angle is determined from the direction vectors 
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generated in the drape simulation. From the yarn spacing in the unsheared fabric, A0, and the 

local fibre angle, , which is defined such that   90, the distance, a0, between yarn axes 

which are assumed to be locally parallel (Fig. 2), is determined as 

 )90cos(00 −= Aa   . (3) 

If a0 > 2Rp, i.e. adjacent yarns are not in contact after shearing the fabric, the local yarn 

mobility can be assumed to be high, and the yarn spacing is randomised as described in 

Section 2.3. If a0  2Rp, i.e. adjacent yarns are already in contact locally, and (further) lateral 

yarn compression would be required to change the yarn spacing, the randomisation procedure 

is skipped, and the permeability is calculated as described in Section 3 for values of a and b 

both set to a0.  

 

2.3 Fabric randomisation 

Here, a bi-directional fabric is treated as a structure with two independent uni-directional 

layers, similar to a non-crimp fabric (NCF). The variable yarn spacing in the layers 

representing the warp- and weft-direction, a and b, is determined from a0 and random 

parameters. Methods for description of yarn waviness in bi-directional fabrics were proposed 

by Ghanem and Dham [17] and Yushanov and Bogdanovich [18]. Adapting the former 

method, Endruweit and Long [11] modelled continuously varying spacing of locally parallel 

yarns in a planar fabric, where the fabric directions are aligned with the x- and y-directions. 

Hence, a, varying along the x-direction, and b, varying along the y-direction, were described 

by 
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In the functions 

 )(sin)( iaiai xxw  +=  (6) 

and 

 )(sin)( ibibi yyw  +=   , (7) 

the values of the frequencies ai and bi and the phases ai and bi, which describe the in-

plane fibre tow waviness, are determined stochastically. A revised version of the proposed 

method [11] is employed here. While the phases are assumed to be uniformly distributed on 

the interval between 0 and , each frequency is correlated to an angle, , describing the 

deviation in yarn alignment from the nominal direction according to 
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Since measured fibre angles in actual unsheared fabrics were found to be normally distributed 

with standard deviation  [12], the probability density of  is 
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The probability to find a deviation in yarn alignment characterised by an angle smaller than 

or equal to  is described by the cumulative distribution function 
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is the error function. By inverting Eq. (10), normally distributed values for  can be 

generated from uniformly distributed random values, D, on the interval (0,1) via  

 )12(erf2 1 −= − D   , (12) 

where the inverse error function, erf-1, can be approximated by a power series [19]. Based on 

these values of , frequencies for modelling yarn waviness are sampled according to Eq. 

(8). This implies that the probability for a frequency to occur decreases with increasing value 

of , thus deviating from the original approach proposed by the authors [11].  

In Eqs. (4) and (5), N was set to a value of 6 as a compromise between accurate 

reproduction of the distribution of frequencies and computational efficiency. The choice of 

terms in the expansions implies that the waviness along the yarn directions determines the 

scale of variation perpendicular to the yarns as well. Since the changes in yarn spacing are 

limited by the yarn mobility in the transverse direction, the amplitudes of the waviness are 

normalised by the number of terms in the expansion, N. This limitation on the waviness 

implies that the global superficial density of the fabric remains constant. 

Continuous co-ordinates, x and y, were used for description of a and b in a planar system 

[11]. To assign properties to finite elements for flow simulation, a and b were picked at the 

centre of mass (xcm, ycm) of each finite element. To extend the approach to the more complex 

case of doubly-curved surfaces, the continuous co-ordinates are replaced by discrete co-

ordinates nwarpA0 and nweftA0. Here, the unique signed integers nwarp and nweft (Table 1) are 

derived  from the positive integers i and j, which index the positions of yarn cross-over points 

along the fabric warp- and weft-direction in each quadrant of the geometry (and thus are not 

unique) relative to the start point of drape at (0, 0). For each finite element, a and b are 

calculated according to Eq. (4) and (5) with a0 determined according to Eq. (3). The functions 

wi(nwarpA0) and wi(nweftA0) are evaluated at the yarn cross-over point (nwarp, nweft) nearest to the 

centre of mass, which is determined from the co-ordinates of the three nodes of the element. 
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This approach effectively maps the continuously varying yarn spacing in the undeformed 

fabric onto a doubly-curved surface. 

 

3 Local permeability calculation 

3.1 General approach 

To estimate the permeability for each finite element, the local fabric structure is assumed 

to be of the type illustrated in Fig. 3 (similar to a NCF). The yarns in both fabric directions 

are assumed to be piecewise parallel with spacing a and b, the local values of which are 

generated as described above. For each of the two layers of yarns in the fabric, the 

permeability is estimated separately. The layer permeability parallel to the yarn axis is 

calculated from the yarn permeability and the equivalent permeability of the inter-yarn gap, 

applying a rule of mixture according to the percentage of layer cross-section occupied by the 

gap, . The transverse layer permeability is dominated by the transverse yarn permeability. 

The fabric permeability is calculated from thickness-weighted averaging of the layer 

permeabilities. 

In the following, permeability calculation will be illustrated for the layer containing yarns 

oriented along the fabric warp-direction, where the geometry is characterised by the yarn 

spacing, a, the yarn thickness, h, and the halfwidth, Rp, of the uncompressed yarn. Local 

random variations in yarn cross-sectional shapes in real fabrics were studied by Olave et al. 

[20]. While irregular non-symmetrical shapes can currently not be handled and are not 

considered here, variations in simplified yarn cross-sections due to local lateral compression 

are approximated. Estimation of yarn cross-sections, which typically show characteristics of 

elliptical, lenticular and rectangular shapes, and numerical calculation of the equivalent 

permeability of inter-yarn gaps as demonstrated by Nordlund and Lundström [21] is too 

complex and time-consuming to be employed for each finite element individually. Hence, 
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three general cases for layers of yarns, distinguished by the ratio 2Rp/a and the value of  

(Fig. 3), are analysed here. 

Case 1: 2Rp < a and  > 0 

• The layer has a dual-scale structure (gaps between yarns),  

• yarns have the initial cross-sectional shape as in the undeformed fabric, which is assumed 

to be elliptical with halfwidth Re = Rp, 

• the fibre volume fraction in the yarns has the initial value, Vf0. 

Case 2: 2Rp  a and  > 0 

• The layer has a dual-scale structure (gaps between yarns), 

• yarn cross-sections are assumed to be power-ellipses [22] with halfwidth smaller than Rp, 

• the fibre volume fraction in the yarns has the initial value, Vf0. 

Case 3: 2Rp  a and  = 0 

• The layer has a single-scale structure (gaps are closed), 

• yarn cross-sections are assumed to be rectangular with halfwidth smaller than Rp,  

• the fibre volume fraction in the yarns has a value Vfyarn  Vf0. 

Walther et al. [23] modelled a draped fabric with dual-scale porosity, as in cases 1 and 2, 

as a homogeneous single-scale medium with additional sink terms representing the porous 

yarns. Here, the dual-scale structure and the transition to single-scale at  = 0 is reproduced 

explicitly in the permeability model. 

 

3.2 Equivalent permeability of inter-yarn gaps 

The axial equivalent permeability of a layer with inter-yarn gap can be approximated as  
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where Dh is the hydraulic diameter of the gap,  the percentage of total cross-sectional layer 

area occupied by the gap, and c a friction factor related to the shape of the gap [24]. The 

contribution of axial yarn permeabilities to the layer permeability is generally small 

compared to the contribution of the equivalent gap permeability and is neglected at this stage. 

The hydraulic diameter is defined as 
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Q
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=   , (14) 

where Q is the gap cross-sectional area and U the gap perimeter in cross-section.  

For case 1 and elliptical yarns, the cross-sectional area of inter-yarn gaps is   

 hRaQ ee )(
2
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Using Ramanujan’s approximation for the perimeter of an ellipse [25], the gap perimeter can 

be estimated as  
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The percentage  is  
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Determination of the friction factor, c, is non-trivial. For characterisation of flow through a 

duct with arbitrary cross-section, Mortensen et al. [26] introduced a geometrical correction 

factor, here referred to as 
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where L is the length of the duct, p the pressure drop along L, v the average flow velocity, 

and  the fluid viscosity. Comparing Eq. (18) with Darcy’s law, which (for the 1D case) can 

be expressed as  

 
L

pK
v
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=   , (20) 

 implies that  
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Equating this with the equivalent duct permeability [24], 
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D
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allows c to be expressed as 

 
C

c
32

=   . (23) 

For elliptical yarns, C can be related to the geometrical parameters of the flow channel by 

substitution of U and Q, which are calculated according to Eqs. (15) and (16). To determine  

for different values of C, Computational Fluid Dynamics (CFD) simulations of steady state 

laminar flow were run in Ansys® CFX®. For an applied pressure drop, the average axial flow 

velocity in flow channels as shown in Fig. 3 (top right) was computed. Translational 

periodicity was applied along the yarn direction to represent parallel yarns with constant 

cross-section. The flow channel perimeter was assumed to be impermeable, and non-slip wall 

boundary conditions were applied. A mesh sensitivity study indicated that the solution 

converged if the average edge length of finite elements in the CFD simulations was 0.01 mm 

or less. The average flow velocity obtained from the simulations allowed the equivalent axial 

channel permeability to be determined according to Eq. (20). Then,  was calculated 

according to Eq. (21). Results for three different percentages, e, as defined in Eq. (17), are 
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plotted in Fig. 4. Here, aspect ratios of elliptical yarns were considered in the range 2Re/h > 1. 

As described by Mortensen et al. [26] for different duct geometries, the dependence of  on C 

is linear at each percentage, e. Different equations for (C) are related to different flow 

velocity distributions across the gap cross-section for different e, as illustrated for two 

examples in Fig. 5. 

Substituting relations for  into Eq. (23) allows the friction factor, c, to be described as a 

function of C only. Its dependence on the aspect ratio, 2Re/h, of elliptical yarns (Fig. 6) can 

be approximated as  

 2)/2(1

B

ee hRBc
−

=   , (24) 

where  

 
22.2

1 83.7 −= eB  (25) 

and 

 
51.2

2 031.0 −= eB   . (26) 

Equation (24) allows the axial permeability of a gap between two yarns with elliptical 

cross-section to be approximated analytically, which can be used to estimate the axial layer 

permeability according to Eq. (13). Since it proves difficult to determine the transverse 

permeability of a layer of elliptical yarns, the cross-sections are converted to equivalent 

rectangular shapes (Fig. 7). This geometrical simplification facilitates transverse permeability 

estimation for yarns and inter-yarn gaps.  

If the yarns are assumed to be rectangular, the gap cross-sectional area is 

 hRaQ rr )2( −=   , (27) 

and the gap perimeter is 

 )2(22 rr RahU −+=   , (28) 
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where Rr is the halfwidth of the yarns. The percentage of total cross-sectional layer area 

occupied by the gap is 

 
a

Rr
r

2
1−=   . (29) 

The approximation for the friction factor  

 17.04.56 Rcr =   , (30) 
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was derived based on data for ducts with rectangular cross-section tabulated by White [27] 

and plotted in Fig. 8. 

Equating axial permeabilities for layers of elliptical yarns and rectangular yarns, 

calculated according to Eq. (13) with the derived approximations for ce and cr, allows Rr to be 

estimated as a function of a, h and Re. Conversion of the yarn shape from elliptical to 

rectangular is based on equating axial layer permeabilities because they are highly sensitive 

to the influence of the inter-yarn gap shape, while transverse layer permeabilities are 

determined mainly by yarn permeabilities.  

For case 3, all inter-yarn gaps are closed, and the compressed yarns have rectangular 

cross-section. Here, Rr = a/2 corresponds to the actual yarn halfwidth. 

For case 2 with 2Rp  a, yarns are deformed in lateral compression. Resulting yarn cross-

sectional shapes can be approximated as power ellipses as discussed elsewhere [22]. Since 

determining Q and U for power ellipses is difficult, the approach described above (for 2Rp  

a) cannot be applied. Here, the dependence of Rr on Re is approximated by linear 

interpolation between the value of Rr at 2Re = a (calculated as described above) and Rr = a/2 

at 2Re/a = 4/, which corresponds to the condition that all inter-yarn gaps disappear at a = 
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Re/2. Since the dependence of Rr on Re (Fig. 9) is weak in this range, the error induced by 

this approximation is small.  

It is to be noted that the total fibre volume in each cell is not necessarily conserved in the 

conversion from elliptical to rectangular yarns, as long as there is an inter-yarn gap. This is 

considered acceptable, since the permeability is gap-dominated. On the other hand, the total 

fibre volume is conserved, if all gaps are closed. This is important, since the permeability is 

yarn-dominated in this range. In the following, the in-plane yarn dimension will be expressed 

in terms of the transformed rectangular halfwidth, Rr. 

 

3.3 Yarn permeability 

The principal permeability values of a yarn, kyarn1 (parallel to its axis) and kyarn2 

(perpendicular to its axis), at a fibre volume fraction Vfyarn are estimated based on the 

equations derived by Gebart [24] from Eq. (13), 
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where c1, c2, Vfmax and Rf are geometrical parameters. Values for c1 and c2 were estimated by 

Gebart based on the assumption of perfectly uniform filament arrangements. However, the 

arrangement of filaments within yarns is typically non-uniform [28], and, at given fibre 

volume fraction, permeabilities for non-uniform yarns differ significantly from idealised 

permeabilities for uniform yarns. Here, the parameters in Gebart’s equations were estimated 

(Table 2) based on numerically generated results for permeabilities of yarns with non-

uniform filament arrangement [22]. A potential change in the yarn-scale values of c1 and c2 
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due to filament reordering with increasing Vfyarn was neglected here, although a reduction in 

non-uniformity can be expected. 

For the example of a uni-directional carbon fibre reinforcement with a filament count of 

12K, the typical fibre volume fraction in the yarns, Vfyarn, was found to be constant at 

approximately 0.65 at low compression levels [22]. At high levels of compression, Vfyarn was 

found to increase. This reflects compression mechanisms for woven fabrics discussed by 

Potluri and Sagar [29]. They are, in sequence of their onset, change of crimp by fibre bending 

(does not apply to the model here), closing of gaps in the fabric structure (at approximately 

constant Vfyarn), and change of yarn cross-sections by micro-scale filament reordering (i.e. 

increase in Vfyarn). Here, Vfyarn is assumed to be constant at a value Vf0 = 0.65 for cases 1 and 

2.  

For case 3, where a = 2Rr, there is no inter-yarn gap, i.e. the layer makes the transition 

from dual-scale to single-scale porous medium. Due to lateral yarn compression and 

reduction in yarn halfwidth with decreasing a, Vfyarn is changes according to  

 
a

RV
V

ef

fyarn
2

0 
=   . (34) 

The maximum value of Vfyarn is enforced to the theoretically possible maximum of 0.91 if the 

calculated value is greater than this. A potential increase in yarn thickness is not considered 

here.  

 

3.4 Layer permeability 

The effective longitudinal layer permeability is calculated from the individual 

permeabilities of yarns (with rectangular cross-section) and inter-yarn gaps in parallel, 

ignoring the potential exchange of fluid between the open inter-yarn gap and the porous 

yarns: 
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The effective transverse layer permeability is calculated from the individual permeabilites in 

series: 
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This can be approximated as  
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In Eq. (35), the equivalent permeability of the inter-yarn gap can be estimated according to 

Eq. (22) with values for c given by White [27]. Alternatively, it can be approximated as 
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which is the solution of the Navier-Stokes equation for flow through a rectangular duct with 

no-slip boundary conditions for solid (top, representing tool surface, and bottom, representing 

interface to weft-layer, in Fig. 7) and permeable (left and right, representing interfaces to 

porous yarns) walls [30]. When the sum in Eq. (38) is truncated after the first three terms, 

which was found to cause a negligible error, results for several examples differed by no more 

than 0.5 % from results calculated according to Eq. (22). 

For case 3, Eqs. (35) and (37) simplify, since 2Rr = a, and the layer permeabilites are equal 

to the respective yarn permabilities. These are calculated from Eqs. (32) and (33) using the 

new value for Vfyarn according to Eq. (34) rather than Vf0. 

Examples for layer permeabilities, klayer1 and klayer2, are plotted in Fig. 10 as functions of 

the ratio, 2Re/a. The same applies to the yarn layer in the fabric weft-direction with yarn 

spacing, b. The results in Fig. 10 show a strong increase in longitudinal layer permeability if 
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the inter-yarn gap width is increased, but only a relatively weak dependence of the transverse 

permeability on the gap width.  

 

3.5 Fabric permeability 

Ignoring inter-layer fluid exchange, the permeability tensor of the combined layers is 

calculated by thickness-weighted averaging of the basic permeabilites of the individual layers 

in both fabric directions according to 
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)()(
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=

weftwarp kk
K   , (39) 

where  is the angle between the fabric warp-direction and the direction of the principal 

permeability value, K1. The angle  is determined from the condition that off-diagonal 

elements in the tensor for the principal permeability are zero:  

 )cos()sin()(cossin)(0 1212  −−−+−= weftweftwarpwarp kkkk   . (40) 

In Fig. 11,  is plotted as a function of the fibre angle, , for different ratios kwarp1/kweft1. The 

results are very similar to an empirical relation derived by Endruweit and Ermanni [31] for 

sheared fabrics at different levels of anisotropy. 

With the value for , the principal permeability values are calculated according to 
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The unit vector, e1, for the directions of the principal permeability, K1, is calculated from  

 weftweftwarpwarp EE eee +=1   ,  (43) 

where 

 cos1 =eewarp    (44) 
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and   

 )cos(1  −=eeweft   . (45) 

Solving this system of three equations allows the factors, Ewarp and Eweft, in Eq. (43) to be 

determined as   

  coscos weftwarp EE −=    (46) 

and    
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coscos)cos( −−
=weftE   . (47) 

Similarly, the system of equations 

 weftweftwarpwarp GG eee +=2   , (48) 

 )90cos(2 += eewarp   (49) 

and   

 )90cos(2  +−=eeweft   , (50) 

allows the factors, Gwarp and Gweft, for calculation of e2 according to Eq. (48) to be determined 

as   

  cos)90cos( weftwarp GG −+=    (51) 

and    
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=weftG   . (52) 

The fibre volume fraction in the fabric is 
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where Vfwarp and Vfweft are the fibre volume fractions in yarns, Vfyarn, in the layers in warp- and 

weft-direction, respectively. The factors Fwarp and Fweft indicate the yarn content in both 

layers. Their values are 
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and 
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4 Application 

For demonstration of the methodology proposed above, resin injection into a fabric formed 

to the double-dome forming benchmark geometry [32] was simulated. The equations 

describing unsaturated flow of a viscous liquid through a porous medium considering 

conservation of the fluid mass were solved based on a non-conforming finite element method 

[33], which is implemented in the commercial software PAM-RTMTM. The double-dome 

geometry was discretised into 9420 triangular finite elements. One set of local fabric 

properties was attributed to each finite element. The typical edge length of the finite elements 

(approximately 3.9 mm) is slightly longer than the yarn spacing, A0, for the example 

discussed here (Table 3). Hence, the local fabric structure (Fig. 3) can be homogenised for 

each finite element.  

The local properties were calculated based on the assumption that the fabric architecture in 

the undeformed uniform fabric is characterised by the geometrical parameters listed in Table 

3. From the condition a0 = 2Rp, Eq. (3) allows the fibre angle at zero width of inter-yarn gaps 

to be determined as 1 = 56. Based on Eq. (34), the minimum fibre angle that can be 

obtained (when Vfyarn has the maximum theoretically possible value of 0.91) can be calculated 

as 2 = 37. Three levels of material-inherent non-uniformity of the undeformed fabric were 

considered. These examples were characterised by standard deviations of fibre angle 
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distributions, , with values 0.0 (uniform fabric), 2.5 and 5.0. The values of these 

parameters lie in a realistic range. 

Three example scenarios for randomised drape simulation are considered here, “on target”, 

“likely” and “unlikely”. These scenarios are characterised by the parameters listed in Table 4. 

For illustration, relative probabilities for the drape start point to be found at the respective 

positions were calculated according to Eq. (1) for the example with x = 50 mm which is 

thought to be in a realistic order of magnitude. The deviation from the target orientation 

indicates the angle between the actual fibre directions in the start point and the co-ordinate x- 

and y-direction, i.e. the axes of the geometry. The respective shear angle distributions are 

plotted in Fig. 12. Since the example geometry is flat around the target start point, the 

configuration of the draped fabric is insensitive to small deviations in the forming process 

from the target. Hence, the “on target” and “likely” scenarios are almost identical. In both 

cases, fabric shear is restricted mainly to the hemispherical parts of the geometry. However, 

the shear angle distribution in the “unlikely” drape scenario is asymmetrical and shows zones 

of relatively high shear even in flat sections of the geometry. 

For the nine possible combinations of the three values for  (0.0, 2.5 and 5.0) and the 

three drape scenarios in Fig. 12, permeability fields were generated, and radial injection 

(from the centre of the geometry) of a fluid with a viscosity of 0.1 Pa×s at a constant injection 

pressure of 1 bar was simulated. For   0.0, five instances were analysed for each 

combination of parameters. For each combination, flow front patterns may vary significantly, 

which is reflected in the standard deviations in the total fill times in Table 5. Representative 

flow front patterns, i.e. patterns corresponding to fill times close to the average for each case 

(Table 5), exhibit slight non-symmetry relative to the co-ordinate x-axis (Fig. 13), even for 

drape “on target” with no fabric variability. This can be explained by the limited numerical 

accuracy in the geometrical data (the shear angle distribution “on target” is also not perfectly 
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symmetrical). If only drape is considered for local permeability modelling ( = 0.0), there 

is almost no difference between the scenarios “on target” and “likely” since the shear angle 

distributions are very similar. The points in the fabric which take longest to impregnate 

coincide with zones of high shear angles. For the “unlikely” drape scenario, flow front 

ellipses are rotated counter-clockwise, and the flow front propagation is significantly slower 

in the y-direction compared to the other two cases. These observations are plausible 

considering the shear angle distributions in Fig. 12, where the “unlikely” drape scenario 

shows zones of relatively high shear, i.e. low permeability, roughly aligned with the x-

direction. 

According to Eq. (8), the probability to find high frequency yarn waviness is higher for  

= 5.0 than for  = 2.5. Hence, local permeabilities tend to vary on a smaller scale for  = 

5.0 than for  = 2.5. Qualitatively, this is reflected in the size of anomalies on the flow 

fronts, which appears to decrease with increasing .  

Quantitatively, simulation results are compared in terms of fill times in Table 5. For “on 

target” and “likely” drape scenarios, the average fill time decreases when  is increased 

from 0.0 to 2.5. For  = 5.0 it increases again to a level similar to the fill time for  = 

0.0. This is consistent with simulation results for a non-uniform flat fabric generated using 

the original model for fabric randomisation [11]. Average fill times were observed to deviate 

from results for the uniform case for small , i.e. large wavelength of yarn waviness, but 

were almost identical to those for the uniform fabric for increasing , i.e. decreasing 

wavelength. The observation was explained by the dominating wavelength in the simulated 

yarn waviness, which, at minimum fill time, was in the same order of magnitude as the 

dimensions of the geometry, hence allowing local permeability maxima to stretch across the 

entire geometry. In Fig. 13, this is reflected in the elongation of the respective flow fronts 

along the y-direction. For the “unlikely” drape scenario, there appears to be no clear 
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dependence of the average fill time on . The average fill time tends to increase with 

increasing deviation in the drape configuration from the target situation. This suggests that 

for drape “on target”, results are dominated by the fabric randomisation, for the “unlikely” 

case, results are dominated by fabric drape. No clear trend can be identified for the variability 

in fill time, although (based on the qualitative observation described above) it might be 

expected to decrease with increasing . 

The formation of dry spots during reinforcement impregnation is related to the presence of 

low permeability spots where the local (meso-scale) flow velocity is reduced significantly 

compared to the surrounding material [34]. In the simulated flow front patterns in Fig. 13, the 

probability for formation of a dry spot at a specific location can be assumed to increase with 

increasing time for the flow front to reach this location, implying that it is highest in zones 

indicated in red and lowest in zones indicated in blue. For the examples shown in Fig. 13, the 

probability to be affected by dry spot formation is significantly higher for case “unlikely” at 

 = 2.5 than for case “on target” at  = 2.5. However, this refers only to meso-/macro-

scale dry spots, not to micro-scale voids which are caused by differences in flow velocity 

between inter-yarn gaps and yarns and capillary pressure as discussed, e.g. by Lee et al. [35]. 

These effects cannot be assessed here since the meso-scale fabric structure was homogenised 

for flow modelling. 

 

5 Conclusion 

The local fibre arrangement in a bi-directional fabric formed to a complex shape was 

modelled considering combined deterministic and stochastic non-uniformity in fabric 

properties. The stochastic arrangement of filaments within yarns, described based on 

experimental data, was taken into account in numerical approximation of axial and transverse 

yarn permeabilities. The stochastic arrangement of yarns in a fabric, which determines the 
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dimensions of inter-yarn gap spaces locally, was modelled as in-plane yarn waviness and 

related to experimentally observed fibre angle distributions. In addition, the deterministic 

process of fabric drape was considered here, which reduces randomness in the yarn 

arrangement locally through reduction of yarn mobility and yarn straightening. This is related 

to localised reduction of inter-yarn gap spaces during shear. To mimic the uncertainty in 

placing a dry reinforcement in a tool as start for the following deterministic forming process, 

drape simulation was randomised in terms of start point and yarn start orientations, which 

determine yarn paths and local fabric shear angles.  

From yarn permeabilities and simulated local yarn spacing distributions, local fibre 

volume fractions and fabric permeabilities were approximated. Particular attention was paid 

to the realistic description of equivalent permeabilities of gaps between yarns with elliptical 

cross-section, which were expressed as a function of geometrical yarn parameters.  

For demonstration of the proposed approach for generation of permeability fields, resin 

injection into a deformed fabric was simulated for three different drape scenarios with 

different probabilities and three different degrees of fabric randomness. The results indicate 

that variability in fabric properties and the forming process affects flow front shapes and 

times for complete impregnation of the reinforcement. It can be concluded that random 

effects need to be considered in simulations, e.g. using a Monte-Carlo approach, to allow 

prediction of the most probable scenarios and the range of possible outcomes. 

Future work will aim at validating predicted resin flow scenarios experimentally, and the 

effect of non-uniform permeability fields on defect formation will be studied in detail. 
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Fig. 1. Definition of quadrants relative to seed yarn paths for the example of fabric drape over a hemisphere.  

 

 

 

Fig. 2. Illustration of relation between yarn spacing in unsheared fabric, A0, yarn spacing in sheared fabric, a0, 

and fibre angle, ; Rp is in-plane dimension of yarns. 
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Fig. 3. Left: local approximation of fabric geometry; right: three alternative cases for approximated cross-

sections of yarns and inter-yarn gaps in layer with yarn spacing, a, and original yarn halfwidth, Rp, in the 

undeformed fabric. 

 

 

 

Fig. 4. Geometrical correction factor, , as a function of the duct compactness, C, for different percentages e; 

square symbols: e = 0.30; diamond symbols: e = 0.40; triangular symbols: e = 0.50. 
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Fig. 5. Results of CFD simulations: Contours indicating qualitatively different axial flow velocity distributions 

in inter-yarn gaps (elliptical yarns) for different values of e; top: e = 0.40; bottom: e = 0.30. 

 

 

 

 

Fig. 6. Friction factor, c, as a function of aspect ratio, 2Re/h, of the elliptical yarns for different percentages e; 

square symbols: e = 0.30; diamond symbols: e = 0.40; triangular symbols: e = 0.50. 
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Fig. 7. Repetitive cross-sectional unit of each layer of yarns in a simplified bi-directional fabric; top: 

approximately elliptical geometry of yarns (shaded) and inter-yarn gap (white); bottom: abstracted rectangular 

geometry for permeability estimation. 

 

 

 

Fig. 8. Values for friction factor, c, according to White [27] as a function of aspect ratio, 2(a-2Rr)/h, of the 

rectangular gaps. 
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Fig. 9. Dependence of Rr on Re for different ratios a/h; top curve: a/h = 12; middle curve: a/h = 6; bottom curve: 

a/h = 3. 
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Fig. 10. Calculated layer permeabilites, klayer1 and klayer2 for different ratios h/Re; top curve: h/Re = 1.0; middle 

curve: h/Re = 0.6; bottom curve: h/Re = 0.2. 

 

4/ 
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Fig. 11. Angle , characterising the orientation of the principal flow direction relative to the warp direction in 

the fabric as a function of the inter-yarn angle, ; for all curves: kwarp2 = kweft2 and kweft1 = 2×kweft2; parameter 

kwarp1/kweft1.   

 

 

          

Fig. 12. Shear angle distributions for double-dome (forming benchmark) geometry at different scenarios; A: on 

target; B: likely; C: unlikely; arrows indicate start point for drape simulation; length of geometry along y-

direction is 360 mm. 
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Fig. 13. Typical examples for flow front positions at different injection times; total fill times, tf, are also given.  
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Table 1. Conversion of positive integers, i and j, indexing yarn cross-over points in each quadrant to unique 

signed integers, nwarp and nweft. 

 

quadrant nwarp nweft 

1 i j 

2 -i j 

3 -i -j 

4 i -j 

 

 

 

 
Table 2. Geometrical yarn parameters in Eqs. (32) and (33); Vfmax determined from theoretical considerations, 

Rf
2/4c1 and c2Rf

2 determined from comparison with numerically generated yarn permeability data [22].  

 

Vfmax Rf
2/4c1 c2Rf

2 

0.91 5.69×10-12 m2 27.49×10-14 m2 

 

 

 

 
Table 3. Parameters characterising architecture of undeformed uniform fabric: yarn spacing, A0, yarn halfwidth, 

Re, ratio A0/Re, yarn thickness, h, fibre volume fraction, Vf, isotropic permeability, K.  

 

A0  / mm Re / mm A0 / Re h / mm Vf K / 10-10 m2 

3.36 1.40 2.4 0.50 0.54 8.15 

 

 

 

 

 

 

 

 



2 
 

Table 4. Characterisation of start configuration for drape simulation: co-ordinates of start point, x and y, angle 

describing surface normal, , and probability relative to probability to start on target, dPxy/dPxy0; deviation of 

yarn orientations from target start orientation is also given. 

 

 x / mm y / mm  dPxy /dPxy0 
deviation from 

target orientation 

on target 0.0 0.0 0 1.00 0 

likely 15.5 20.5 0 0.88 -2 

unlikely 33.4 97.3 35 0.10 4 

 

 

 

 
Table 5. Total fill times for different combinations of drape scenario and standard deviation of fibre angles, ; 

average values, standard deviations and coefficients of variation (standard deviation / average value) are given 

where appropriate. 

 

 total fill times / s 

  = 0.0  = 2.5  = 5.0 

on target 302 244  30 ( 12 %) 292  13 ( 4 %) 

likely 299 284  15 ( 5 %) 303  28 ( 9 %) 

unlikely 367 377  44 ( 11 %) 377  28 ( 7 %) 

 

 


