11 research outputs found

    Review of CHINARE chemical oceanographic research in the Southern Ocean during 1984–2016

    Get PDF
    Between 1984 and 2016, China executed 33 Antarctic cruises with the icebreaker R/V Xuelong, which have provided opportunities for Chinese scientists to investigate the status and changes of the Southern Ocean. Research in chemical oceanography constitutes one of the primary missions of the Chinese National Antarctic Research Expedition (CHINARE). This paper reviews nearly 30 years of Chinese Antarctic expeditions, focusing on the major progress achieved in chemical oceanographic research. Specifically, the sea-surface distributions and air–sea fluxes of CO2 and N2O are considered, and the transport, flux, and budget of organic matter are investigated based on isotopes in the Southern Ocean, especially in Prydz Bay. In addition, the nutrient distribution and deep-water particle export in Prydz Bay and the study of aerosol heavy metal characteristics are considered. Finally, the prospects for future Chinese Antarctic chemical oceanographic research are outlined

    Flexible Nanopaper Composed of Wood-Derived Nanofibrillated Cellulose and Graphene Building Blocks

    Get PDF
    Nanopaper has attracted considerable interest in the fields of films and paper research. However, the challenge of integrating the many advantages of nanopaper still remains. Herein, we developed a facile strategy to fabricate multifunctional nanocomposite paper (NGCP) composed of wood-derived nanofibrillated cellulose (NFC) and graphene as building blocks. NFC suspension was consisted of long and entangled NFCs (10–30 nm in width) and their aggregates. Before NGCP formation, NFC was chemically modified with a silane coupling agent to ensure that it could interact strongly with graphene in NGCP. The resulting NGCP samples were flexible and could be bent repeatedly without any structural damage. Within the NGCP samples, the high aspect ratio of NFC made a major contribution to its high mechanical strength, whereas the sheet-like graphene endowed the NGCP with electrical resistance and electrochemical activity. The mechanical strength of the NGCP samples decreased as their graphene content increased. However, the electrical resistance and electrochemical activity of the NGCP samples both rose with increasing content of graphene. The NGCPs still kept advantageous mechanical properties even at high temperatures around 300°C because of the high thermal stability of NFCs and their strong entangled web-like structures. In view of its sustainable building blocks and multifunctional characteristics, the NGCP developed in this work is promising as low-cost and high-performance nanopaper

    Influence of laser surface remelt on high temperature oxidation of a low pressure plasma sprayed AMDRY997 overlay coating

    No full text
    An AMDRY997 overlay coating on IN100 superalloy substrate was laser remelted using a solid state YAG laser with power of 20-30 watts. Oxidation tests at 900-1100 °C demonstrated that the oxidation resistance of the diffused coatings was significantly enhanced by laser surface remelt. The oxide scales formed on both the diffused and the remelted coatings all exhibit excellent spallation resistance. The oxide scale on the remelted coatings was thinner with better protectiveness and seemed to be high in alumina. The diffused samples had thicker oxide scales and considerable internal oxidation along the inherent pores. Laser modified coatings had microstructures with very fine crystallites, and a rather uniform distribution of active elements. Surface segregation of yttrium on the coating surface, enabled the nucleation and formation of a compact alumina scale

    Cellulose-based functional gels and applications in flexible supercapacitors

    No full text
    In order to resolve the global crisis of fossil energy shortage and climate warming, the development of efficient energy storage devices is a significant topic at present. Supercapacitors as the novel type of energy storage devices have the unique advantages, including the fast charging/discharging behaviors, high-energy/power density, and stable cycling performance. Compared with traditional supercapacitors, flexible supercapacitors are environmentally friendly, light weight, small size and high safety. Therefore, flexible supercapacitors have a wide application prospect in emerging electronic devices. Due to its flexibility, biocompatibility, and structure designability, cellulose and its gel materials are gradually used as electrodes, separators and electrolytes in flexible supercapacitors. Several construction processes at molecular scale for high-performance cellulose gels are summarized. Meanwhile, this review covers the recent progress of developing the flexible supercapacitors and all-in-one supercapacitors based on cellulose functional gels. We finally discussed the potential challenges and opportunities for cellulose and its derived materials in new-style flexible supercapacitors and other electronic devices

    Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    No full text
    Jinping Underground lab for Nuclear Astrophysics (JUNA) will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given

    Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    No full text
    Jinping Underground lab for Nuclear Astrophysics (JUNA) will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given

    Commissioning of Underground Nuclear Astrophysics Experiment JUNA in China

    No full text
    Underground Nuclear Astrophysics Experiment in China (JUNA) has been commissioned by taking the advantage of the ultra-low background in Jinping underground lab. High current mA level 400 KV accelerator with an ECR source and BGO detectors were commissioned. JUNA studies directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. In the first quarter of 2021, JUNA performed the direct measurements of 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O near the Gamow window. The experimental results reflect the potential of JUNA with higher statistics, precision and sensitivity of the data. The preliminary results of JUNA experiment and future plan are given
    corecore