1,655 research outputs found

    Retardation Terms in The One-Gluon Exchange Potential

    Full text link
    It is pointed out that the retardation terms given in the original Fermi-Breit potential vanish in the center of mass frame. The retarded one-gluon exchange potential is rederived in this paper from the three-dimensional one-gluon exchange kernel which appears in the exact three-dimensional relativistic equation for quark-antiquark bound states. The retardation part of the potential given in the approximation of order p2/m2p^2/m^2 is shown to be different from those derived in the previous literature. This part is off-shell and does no longer vanish in the center of mass frame

    Deterministic and Efficient Quantum Cryptography Based on Bell's Theorem

    Full text link
    We propose a novel double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similarly to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under current technology.Comment: 4 pages, 1 figure; published version with a note adde

    Optimal A-Train Data Utilization: A Use Case of Aura OMI L2G and MERRA-2 Aerosol Products

    Get PDF
    Ozone Monitoring Instrument (OMI) aboard NASA's Aura mission measures ozone column and profile, aerosols, clouds, surface UV irradiance, and the trace gases including NO2, SO2, HCHO, BrO, and OClO using UltraViolet electromagnetic spectrum (280 - 400 nm) with a daily global coverage and a pixel spatial resolution of 13 km 24 km at nadir, and it's been one of the key instruments to study the Earth's atmospheric composition and chemistry. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. Compared to its predecessor MERRA, MERRA-2 is enhanced with more aspects of the Earth system among which is aerosol assimilation. When comparing between satellite pixel measurements and modeled grid data, how to properly handle counterpart pairing is critical considering their spatial and temporal variations. The comparison between satellite and model data by simply using Level 3 (L3) products may result biases due to lack of detailed temporal information. It has been preferred to inter-compare or implement satellite derived physical quantity (i.e., Level 2 (L2) Swath type) directly with/to model measurements with higher temporal and spatial resolution as possible. However, this has posed a challenge in the community to handle. Rather than directly handling the L2 or L3 data, there is a Level 2G (L2G) product conserving L2 pixel scientific data quality but in Grid type with the global coverage. In this presentation, we would like to demonstrate the optimal utilization of OMI L2G daily aerosol products by comparing with MERRA-2 hourly aerosol simulations matched well in both space and time

    Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation

    Get PDF
    The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/)

    A systematic TMRT observational study of Galactic 12^{12}C/13^{13}C ratios from Formaldehyde

    Full text link
    We present observations of the C-band 1101111_{10}-1_{11} (4.8 GHz) and Ku-band 2112122_{11}-2_{12} (14.5 GHz) K-doublet lines of H2_2CO and the C-band 1101111_{10}-1_{11} (4.6 GHz) line of H2_213^{13}CO toward a large sample of Galactic molecular clouds, through the Shanghai Tianma 65-m radio telescope (TMRT). Our sample with 112 sources includes strong H2_2CO sources from the TMRT molecular line survey at C-band and other known H2_2CO sources. All three lines are detected toward 38 objects (43 radial velocity components) yielding a detection rate of 34\%. Complementary observations of their continuum emission at both C- and Ku-bands were performed. Combining spectral line parameters and continuum data, we calculate the column densities, the optical depths and the isotope ratio H2_212^{12}CO/H2_213^{13}CO for each source. To evaluate photon trapping caused by sometimes significant opacities in the main isotopologue's rotational mm-wave lines connecting our measured K-doublets, and to obtain 12^{12}C/13^{13}C abundance ratios, we used the RADEX non-LTE model accounting for radiative transfer effects. This implied the use of the new collision rates from \citet{Wiesenfeld2013}. Also implementing distance values from trigonometric parallax measurements for our sources, we obtain a linear fit of 12^{12}C/13^{13}C = (5.08±\pm1.10)DGC_{GC} + (11.86±\pm6.60), with a correlation coefficient of 0.58. DGC_{GC} refers to Galactocentric distances. Our 12^{12}C/13^{13}C ratios agree very well with the ones deduced from CN and C18^{18}O but are lower than those previously reported on the basis of H2_2CO, tending to suggest that the bulk of the H2_2CO in our sources was formed on dust grain mantles and not in the gas phase.Comment: 27 pages, 8 figures, 7 tables. Accepted for publication in The Astrophysical Journa

    Quantum signature scheme with single photons

    Full text link
    Quantum digital signature combines quantum theory with classical digital signature. The main goal of this field is to take advantage of quantum effects to provide unconditionally secure signature. We present a quantum signature scheme with message recovery without using entangle effect. The most important property of the proposed scheme is that it is not necessary for the scheme to use Greenberger-Horne-Zeilinger states. The present scheme utilizes single photons to achieve the aim of signature and verification. The security of the scheme relies on the quantum one-time pad and quantum key distribution. The efficiency analysis shows that the proposed scheme is an efficient scheme

    All-Versus-Nothing Violation of Local Realism for Two Entangled Photons

    Full text link
    It is shown that the Greenberger-Horne-Zeilinger theorem can be generalized to the case with only two entangled particles. The reasoning makes use of two photons which are maximally entangled both in polarization and in spatial degrees of freedom. In contrast to Cabello's argument of "all versus nothing" nonlocality with four photons [Phys. Rev. Lett. 87, 010403 (2001)], our proposal to test the theorem can be implemented with linear optics and thus is well within the reach of current experimental technology.Comment: 4 pages, 2 figs / published version, but with typos corrected [e.g., Fig. 2(f)], and with comments on quantum erasure adde

    Perfect Test of Entanglement for Two-level Systems

    Full text link
    A 3-setting Bell-type inequality enforced by the indeterminacy relation of complementary local observables is proposed as an experimental test of the 2-qubit entanglement. The proposed inequality has an advantage of being a sufficient and necessary criterion of the separability. Therefore any entangled 2-qubit state cannot escape the detection by this kind of tests. It turns out that the orientation of the local testing observables plays a crucial role in our perfect detection of the entanglement.Comment: 4 pages, RevTe

    Classifying N-qubit Entanglement via Bell's Inequalities

    Get PDF
    All the states of N qubits can be classified into N-1 entanglement classes from 2-entangled to N-entangled (fully entangled) states. Each class of entangled states is characterized by an entanglement index that depends on the partition of N. The larger the entanglement index of an state, the more entangled or the less separable is the state in the sense that a larger maximal violation of Bell's inequality is attainable for this class of state.Comment: 4 pages, 3 figure

    Observation of orbital ordering and origin of the nematic order in FeSe

    Full text link
    To elucidate the origin of nematic order in FeSe, we performed field-dependent 77Se-NMR measurements on single crystals of FeSe. We observed orbital ordering from the splitting of the NMR spectra and Knight shift and a suppression of it with magnetic field B0 up to 16 T applied parallel to the Fe-planes. There is a significant change in the distribution and magnitude of the internal magnetic field across the orbital ordering temperature Torb while stripe-type antiferromagnetism is absent. Giant antiferromagnetic (AFM) spin fluctuations measured by the NMR spin-lattice relaxation are gradually developed starting at ~ 40 K, which is far below the nematic ordering temperature Tnem. These results demonstrate that orbital ordering is the origin of the nematic order, and the AFM spin fluctuation is the driving mechanism of superconductivity in FeSe under the presence of the nematic order.Comment: 6 pages, 4 figure
    corecore