25,312 research outputs found
Why not Merge the International Monetary Fund (IMF) with the International Bank for Reconstruction and Development (World Bank)
Motivation: Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state. CECT captures large numbers of macromolecular complexes of highly diverse structures and abundances. However, the structural complexity and imaging limits complicate the systematic de novo structural recovery and recognition of these macromolecular complexes. Efficient and accurate reference-free subtomogram averaging and classification represent the most critical tasks for such analysis. Existing subtomogram alignment based methods are prone to the missing wedge effects and low signal-to-noise ratio (SNR). Moreover, existing maximum-likelihood based methods rely on integration operations, which are in principle computationally infeasible for accurate calculation. Results: Built on existing works, we propose an integrated method, Fast Alignment Maximum Likelihood method (FAML), which uses fast subtomogram alignment to sample sub-optimal rigid transformations. The transformations are then used to approximate integrals for maximum-likelihood update of subtomogram averages through expectation-maximization algorithm. Our tests on simulated and experimental subtomograms showed that, compared to our previously developed fast alignment method (FA), FAML is significantly more robust to noise and missing wedge effects with moderate increases of computation cost. Besides, FAML performs well with significantly fewer input subtomograms when the FA method fails. Therefore, FAML can serve as a key component for improved construction of initial structuralmodels frommacromolecules captured by CECT
Floquet engineering of long-range p-wave superconductivity: Beyond the high-frequency limit
It has been shown that long-range {\it p}-wave superconductivity in a Kitaev
chain can be engineered via an ac field with a high frequency [Benito et al.,
Phys. Rev. B 90, 205127 (2014)]. For its experimental realization, however,
theoretical understanding of Floquet engineering with a broader range of
driving frequencies becomes important. In this work, focusing on the ac-driven
tunneling interactions of a Kitaev chain, we investigate effects from the
leading correction to the high-frequency limit on the emergent {\it p}-wave
superconductivity. Importantly, we find new engineered long-range {\it p}-wave
pairing interactions that can significantly alter the ones in the
high-frequency limit at long interaction ranges. We also find that the leading
correction additionally generates nearest-neighbor {\it p}-wave pairing
interactions with a renormalized pairing energy, long-range tunneling
interactions, and in particular multiple pairs of Floquet Majorana edge states
that are destroyed in the high- frequency limit.Comment: 13 pages, 8 figure
Cooling a nanomechanical resonator by a triple quantum dot
We propose an approach for achieving ground-state cooling of a nanomechanical
resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD
is an electronic analog of a three-level atom in configuration which
allows an electron to enter it via lower-energy states and to exit only from a
higher-energy state. By tuning the degeneracy of the two lower-energy states in
the TQD, an electron can be trapped in a dark state caused by destructive
quantum interference between the two tunneling pathways to the higher-energy
state. Therefore, ground-state cooling of an NAMR can be achieved when
electrons absorb readily and repeatedly energy quanta from the NAMR for
excitations.Comment: 6 pages, 3 figure
Low-Frequency Raman Modes and Electronic Excitations In Atomically Thin MoS2 Crystals
Atomically thin MoS crystals have been recognized as a quasi-2D
semiconductor with remarkable physics properties. This letter reports our Raman
scattering measurements on multilayer and monolayer MoS, especially in
the low-frequency range (50 cm). We find two low-frequency Raman
modes with contrasting thickness dependence. With increasing the number of
MoS layers, one shows a significant increase in frequency while the other
decreases following a 1/N (N denotes layer-number) trend. With the aid of
first-principle calculations we assign the former as the shear mode
and the latter as the compression vibrational mode. The opposite
evolution of the two modes with thickness demonstrates novel vibrational modes
in atomically thin crystal as well as a new and more precise way to
characterize thickness of atomically thin MoS films. In addition, we
observe a broad feature around 38 cm (~5 meV) which is visible only
under near-resonance excitation and pinned at the fixed energy independent of
thickness. We interpret the feature as an electronic Raman scattering
associated with the spin-orbit coupling induced splitting in conduction band at
K points in their Brillouin zone.Comment: 5 pages, 4 figure
Collective quantum phase slips in multiple nanowire junctions
Realization of robust coherent quantum phase slips represents a significant
experimental challenge. Here we propose a new design consisting of multiple
nanowire junctions to realize a phase-slip flux qubit. It admits good
tunability provided by gate voltages applied on superconducting islands
separating nanowire junctions. In addition, the gates and junctions can be
identical or distinct to each other leading to symmetric and asymmetric setups.
We find that the asymmetry can improve the performance of the proposed device,
compared with the symmetric case. In particular, it can enhance the effective
rate of collective quantum phase slips. Furthermore, we demonstrate how to
couple two such devices via a mutual inductance. This is potentially useful for
quantum gate operations. Our investigation on how symmetry in multiple nanowire
junctions affects the device performance should be useful for the application
of phase-slip flux qubits in quantum information processing and quantum
metrology.Comment: 12 pages, 6 figure
Small‐for‐size liver transplanted into larger recipient: A model of hepatic regeneration
Orthotopic liver transplantation was performed in 60 recipient rats weighing 200 to 250 gm. Sixty rats of the same strain were used as liver donors, 30 weighing 100 to 140 gm (small for size) and the other 30 weighing 200 to 250 gm (same size). After 1, 2, 3, 4, 7 and 14 days (n = 5 each) DNA synthesis, nuclear thymidine labeling and mitoses were increased in both the small‐for‐size and same‐size groups, but significantly more in the former. These changes were maximal after 48 to 72 hr, similar to but later than the well‐known regeneration response after partial hepatectomy, which peaks at 24 hr in rats. Indirect indexes of regeneration of the transplanted livers also were measured: plasma or serum ornithine decarboxylase; insulin and glucagon serum levels; estradiol and testosterone serum levels (and their nuclear and cytosolic receptors); and transforming growth factor‐ß, c‐Ha‐ras and c‐jun mRNA expressions. With the small‐for‐size transplantation, these followed the same delayed pattern as the direct regeneration parameters. The small livers gradually increased in size over the course of 1 to 2 wk and achieved a volume equal to that of the liver originally present in the recipient. In contrast, no significant liver weight gain occurred in the transplanted livers from same‐size donors despite the evidence of regeneration by direct indexes, but not by most of the surrogate parameters, including ornithine decarboxylase. (Hepatology 1993;19:210–216). Copyright © 1994 American Association for the Study of Liver Disease
- …
