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Orthotopic liver transplantation was performed in 
60 recipient rats weighing 200 to 250 gm. Sixty rats of 
the same strain were used as liver donors, 30 weighing 
100 to 140 gm (small for size) and the other 30 weighing 
200 to 250 gm (same size). Mter 1, 2, 3, 4, 7 and 14 days 
(n = 5 each) DNA synthesis, nuclear thymidine la
beling and mitoses were increased in both the small
for-size and same-size groups, but significantly more in 
the former. These changes were maximal after 48 to 72 
hr, similar to but later than the well-known regener
ation response after partial hepatectomy, which peaks 
at 24 hr in rats. Indirect indexes of regeneration of the 
transplanted livers also were measured: plasma or 
serum ornithine decarboxylase; insulin and glucagon 
serum levels; estradiol and testosterone serum levels 
(and their nuclear and cytosolic receptors); and trans
forming growth factor-~, c-Ha-ras and c-jun mRNA 
expressions. With the small-for-size transplantation, 
these followed the same delayed pattern as the direct 
regeneration parameters. The small livers gradually 
increased in size over the course of 1 to 2 wk and 
achieved a volume equal to that of the liver originally 
present in the recipient. In contrast, no significant 
liver weight gain occurred in the transplanted livers 
from same-size donors despite the evidence of regen
eration by direct indexes, but not by most of the 
surrogate parameters, including ornithine decarbox
ylase. (HEPATOLOGY 1993;19:210-216.) 

It has previously been demonstrated, both in human 
beings (1) and in dogs (2), that a liver from a small donor 
transplanted into a larger recipient undergoes hyper
trophic and hyperplastic changes that result in a 
progressive increase of liver volume, until the trans-
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planted liver reaches the appropriate size for the 
recipient. In this study this process of liver growth was 
better characterized by examination of multiple param
eters. These included the direct regeneration indexes of 
DNA synthesis, labeled nuclei and subsequent mitosis 
(3-5). Surrogate manifestations of regeneration also 
were monitored: systemic insulin and glucagon; circu
lating sex steroid hormones and their nuclear and 
cytosolic liver receptors (6-12); and the expression of 
transforming growth factor-j3 (TGF-j3) mRNA (13, 14), 
c-Ha-ras mRNA (15) and c-jun mRNA (16, 17). These 
changes after transplantation of small-for-size livers 
were compared with those occurring after transplan
tation of size-matched livers. 

MATERIALS AND METHODS 

Animals. Male Fischer rats (F -344) weighing 180 to 220 gm 
or 90 to 120 gm were purchased from Zivic Miller Laboratories 
(Zelienople, PA). All the animals were maintained in a 
temperature- and light-controlled room (light from 6:30 AM to 
6:30 PM) for at least 1 wk before being used, after their body 
weight had reached the appropriate ranges. They received food 
and water ad libitum. Our institution complies with all u.s. 
Department of Agriculture regulations and is fully accredited 
by the American Association for Accreditation of Laboratory 
Animal Care. 

Surgical Procedures. Orthotopic liver transplantation 
(OLT) was performed by the procedure of Kamada and Calne 
(18). The suprahepatic vena cava was anastomosed end-to-end 
with 8-0 Novafil (American Cyanamid Co., D & G Monofil, Inc., 
Manati, Puerto Rico) suture. The intrahepatic vena cava and 
the portal vein were anastomosed by cuffs made with PE-240 
and PE-200 polyethylene tubes, respectively. 

All surgical procedures were performed between 8:30 AM and 
11:30 AM. Because of the 1 to 2 hr required for each 
transplantation, equal-for-size and small-for-size procedures 
were always done in pairs at the same time. At the time of 
animal death, the patency of the portal vein and hepatic vein 
was routinely checked. At the same time as hormone measure
ments, blood hematocrit values were checked as a monitor for 
blood loss. 

Study Design_ Before transplantation, the body and liver 
weight of all donors and recipients were determined with a 
modified automatic Mettler PE-2000 balance (Mettler In
strument Corp., Hightstown, NJ). The recipient rats (body 
weight = 200 to 250 gm) were divided in two different groups. 
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Thirty rats (control group) underwent transplantation with 
organs obtained from animals of the same size (200 to 250 gm 
body wt); the other 30 rats (experimental group) received livers 
from smaller size donors (100 to 140 gm body wt). At the time 
of transplantation, the donor livers weighed 5.38 ± 0.90 gm in 
the small-for-size cohort and 8.99 ± 1.02 gm in the same-size 
group. 

At days 1, 2, 3, 4, 7 and 14 after OLT, five recipients of 
same-size livers and five animals with small-for-size livers 
were killed to obtain systemic blood and liver samples for 
biochemical determinations and liver weight. In addition, five 
normal rats were killed to collect systemic blood for serum 
basal hormone levels (insulin, glucagon, testosterone and 
estrogen), hepatic receptor level for androgen and estrogen and 
ornithine decarboxylase (ODC) plasma activity. Although 
some of the hormones are largely taken up on first pass 
through the liver (8, 19-21), systemic venous sampling was 
used because it was not feasible to repeatedly take portal 
venous collections. 

Biochemical Determinations. Immunoreactive insulin 
plasma levels were determined by RIA, with a commercial kit 
obtained from Serono Diagnostics (Baintree, MA). The de
tection limit of the assay was 5 j.l.U/ml. The coefficient of 
variation (CV) of replicate samples assayed in our laboratory 
with this test was 8.37%. 

Immunoreactive glucagon plasma levels were determined 
with a commercial kit obtained from Serono Diagnostics. This 
kit was chosen specifically because of its high degree of 
accuracy, precision and specificity (22). Blood samples for the 
glucagon assay were collected in chilled tubes containing 500 
units of a trypsin inhibitor and 1.2 mg sodium EDT A per 
milliliter of whole blood collected for assay. The detection limit 
for the assay was 15 pg/ml. The CV for this kit for replicate 
samples assayed in our laboratory was 9.6%. A gel filtration 
technique (23) was used to separately determine the amounts 
of immunoreactive glucagon having a molecular weight of 
3,500 to 7,000 (biological) and 40,000 (glucagon aggregate) Da. 

Serum estradiol and testosterone levels were determined 
with a 1251 solid-phase assay. Direct RIA kits were obtained 
from Immunochem Corp. (Carson, CA). The sensitivity for 
estradiol and for testosterone was 1.0 pg/ml and 0.2 ng/ml, 
respectively. The CV for these kits in our laboratory, assaying 
replicate samples, was 6.0% and 10.9%, respectively. The 
interassay CV was less than 11% for all the above-mentioned 
determinations. 

Plasma ODC activity, expressed in terms of disintegrations 
per minute per milliliter of plasma, was determined as 
previously described (24). To prevent enzyme degradation, 
blood (3 ml) was collected in chilled test tubes containing 60 j.l.l 
of the following solution: pyridoxal phosphate 5 mmol/L, 
dithiotreitol 100 mmol/L, EDTA 0.5 mmol/L and Tween-80 
0.2%. 

Estrogen-receptor Assay. Cytosolic receptors were assayed 
by an immunoenzymatic method with a commercial kit 
(Abbott Laboratories, Chicago, IL) containing a specific mono
clonal estrogen-receptor antibody (25). The receptor levels 
were expressed as picomoles per gram of fresh liver tissue. 
Nuclear receptors were evaluated as previously described (10, 
11). Receptor levels were expressed as femtomoles per mil
ligram of DNA. 

Androgen-receptor Assay. Cytosolic and nuclear androgen 
receptors were evaluated following a standard method (11), 
and the values obtained were expressed as femtomoles per 
gram of fresh liver tissue and femtomoles per milligram DNA, 
respectively. 

DNA Synthesis. At 8:30 AM on the day the rats were killed, 
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they all received 50 j.l.Ci of [3H]thymidine (50 to 80 Cilmmol; 
New England Nuclear, Boston, MA) by intraperitoneal in
jection. Two hours later the animals were killed, and DNA 
synthesis was measured by [3H]thymidine incorporation (11). 
The data were expressed as counts per minute per milligram 
DNA. The radioactivity content of samples was determined 
with a liquid scintillation counter (LKB 1219 RackBeta; LKB 
Instruments, Inc., Gaithersburg, MD) and an automatic 
gamma counter (LKB 1272; LKB Instruments, Inc.). 

Northern-blot Analysis. Total cellular RNA was extracted 
with RNAzol (Biotech, Houston, TX). Twenty micrograms 
total RNA was electrophoresed in a 1% agarose gel in 10 
mmol/L sodium phosphate buffer with constant recirculation. 
The fractionated RNA was transferred to a Zitabind nylon 
membrane (Waterman Lab, Hillsboro, OR) overnight in 
20 x standard saline citrate. Mter transfer, the blot was fixed 
by UV light (short wave, 254 nm). cDNA probes were labeled 
with 32p with a random-primed labeling kit (Boehringer 
Mannheim Co., Indianapolis, IN). Prehybridization was done 
at 70° C from 30 min to 3 hr with Church buffer (1% BSA, 7% 
SDS, 0.5 mol/L sodium phosphate and 1 mmol/L EDTA) (14), 
and then the 32P-Iabeled probes were added to the Church 
buffer at 70° C for overnight hybridization. Mter hybrid
ization, the membrane was washed in buffer A (1% BSA, 5% 
SDS, 40 mmol/L sodium phosphate and 1 mmol/L EDTA) at 
70° C for 20 min twice and then in buffer B (1% SDS, 40 
mmol/L sodium phosphate and 1 mmol/L EDTA) and 70° C for 
20 min four times. The washed and air-dried membranes were 
autoradiographed at - 70° C. Controls for equal loading of 
RNA to the various gel lanes were included by use of the 
internal probe for ribosomal 18S RNA. 

eDNA Probes. c-Ha-ras was purchased from Oncogene 
Science Inc., Uniondale, NY; c-jun cDNAis a 2.0-kbEcoRI and 
BamHI fragment kindly provided by Dr. Frank Rauscher III, 
Wistar Institute, Philadelphia, PA; TGF-~ cDNA is a 1.3-kb 
EcoRI fragment, a gift from Genentech Inc., San Francisco, 
CA; and c-myc cDNA is a 9.0-kb Ecol and HindIII fragment 
(American Type Culture Collection, Rockville, MD). 

Histology and Autoradiography. Mter the rats were killed, 
specimens from each liver were taken and fixed in buffered 
formaldehyde. Paraffin sections were prepared for histological 
examination with hematoxylin and eosin, and the percentage 
of hepatocytes in mitosis was counted. Other sections were 
treated, as previously described, for autoradiographic studies 
(11). 

Other Methods. Protein concentrations were determined by 
the method of Lowry et al. (26). DNA concentrations of 
homogenates and nuclear preparations were determined by 
the Burton method (27). Unweighted linear regression 
analyses of Scatchard plots were performed on an Olivetti 
MI-P81 computer. (Olivetti, S.p.A., Bari, Italy). 

Statistical Analysis. Statistical evaluation of the data was 
performed with a two-way ANOVA on "Epistat Software" 
available on IBM personal computers (Pittsburgh, PA). Only a 
p value less than 0.05 was considered significant. 

RESULTS 
Hepatic Growth. When small-for-size livers were 

transplanted into larger recipients, an increase in liver 
mass was found, which became significant on day 4 and 
lasted until the organ reached the appropriate weight for 
the recipient (Fig. 1). Liver weight did not change 
significantly in the control (same-size) group over the 
same time period. 
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FIG. 1. Weight changes (mean :t S.D.) of livers transplanted from 
same-size (hatched bars) vs. small donors (n = 5 rats at all time 
points). *p < 0.05 for increased weight of small-size livers at different 
times after transplantation vs. original weight. +p < 0.01 for weight 
gain of small-for-size vs. equal-size livers at same time points. 

DNA Synthesis, Nuclear Labeling and Mitosis. The 
weight changes in the small livers were preceded by 
significant rises in thymidine labeling, mitotic index 
and DNA synthesis that were obvious by day 2 (Fig. 
2), with a beginning decline on day 4 when the actual 
weight increase was first significant. Similar but sig
nificantly smaller increases in the indexes of regen
eration were also seen in the livers that were trans
planted from same-size donors (Fig. 2). However, these 
were not reflected in increases in the liver weights (see 
Fig. 1). 

ODC. In contrast, ODe increased at 24 and 48 hr only 
when the small livers were used. The ODe changes were 
not correlated with contemporaneous plasma transam
inase measures, which were increased to the same extent 
in both groups (data not shown). The evidence of 
regeneration activity in both the small and same
size livers had returned to baseline by 7 and 14 days 
(Fig. 3). 

Hormone and Receptor Determinations. In serum 
prepared from systemic venous blood, testosterone 
levels decreased by more than 50% in the recipients of 
small livers but not in recipients of same-size livers, 
reaching a nadir at 24 to 48 hr and returning to near 
baseline levels by 4 days after OLT (Fig. 4A). The 
androgen-receptor levels of liver tissue in the small-for
size groups but not in the same-size livers also declined 
sharply with a similar time course (Fig. 4B and e). In 
contrast, estrogen serum levels (Fig. 5A) were increased, 
along with the hepatic tissue estrogen-receptor levels 
(nuclear and cytosolic estrogen receptors, Fig. 5B and e). 
Similar change of serum androgen and estrogen and 
their liver receptors has previously been described by us 
after hepatic regeneration after partial hepatectomy 
(PH) but with a more rapid onset and more prompt 
recovery (11). 
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FIG. 2. [3Hlthymidine incorporation, percentage of labeled nuclei 
and percentage of mitoses after OLT (mean:t S.D.). Hatched 
bars = equal-for-size donor; solid bars = small-far-size donor (n = 5 
rats each time point). *p < 0.005 and **p < 0.01 for the increase in 
measures from postoperative day 2 onward vs. values on postoperative 
day 1. +p < 0.01 for differences in small vs. same-size livers at the 
same time points. 

Significant changes were observed for glucagon 
and insulin levels in rat serum of the experimental 
group (Fig. 6A and B), but much less dramatically 
than those previously reported for hepatic regeneration 
after PH (9, 28). In the recipients of equal-size livers, 
no blood hormone or hepatic receptor changes were 
found. 

Gene Expression Changes. A prolonged increase was 
seen in TGF-[3 mRNA in the small transplanted livers, 
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FIG. 3. Systemic plasma ODC (mean ± S.D.) after OLT (n = 5 rats 
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FIG. 4. (A) Serum testosterone levels and (B) liver nuclear (nAR) and 
(Cl cytosolic (cAR) androgen-receptor levels after OLT (mean ± S.D.). 
Hatched bars = equal donor size; solid bars = small-for-size livers 
(n = 5 rats in each group). Pre-OLT vs. post-OLT values at different 
time points: *p < 0.01 and **p < 0.001. Small vs. same-size livers at 
same time points: +p < 0.01 and tp < 0.001. 

which became evident after 2 days. This was not 
distinguishably different from changes in the same-size 
livers. Similarly increased c-jun and c-Ha-ras expression 
was found in both the small and matched-sized livers, 
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FIG. 5. (A) Serum testosterone levels and (B) nuclear (nER) and (C) 
cytosolic (cER) estrogen-receptor levels in liver after OLT 
(mean ± S.D.). Hatched bars = equal donor size; solid bars = small
for-size livers. *p < 0.01 and **p < 0.001 for pre-OLT vs. post-OLT 
value at different time points. +p < 0.01 and tp < 0.001 for small vs. 
same-size livers at the same time points. 

and both elevations of mRNA were later than that ofthe 
TGF-[3 (Fig. 7). 

DISCUSSION 

These experiments suggest that the events and pre
sumably the mechanisms of hepatic mass adjustment 
are the same after the transplantation of disparate-size 
livers as those after PH. The principal differences 
between the PH and transplantation models appear to 
be quantitative, and a modified time frame. The identi
fiable hallmarks of classic posthepatectomy regener
ation that also were seen after transplantation included 
an early increase in ODe, followed by increased thy
midine incorporation, DNA synthesis and mitoses. The 
typical hormone changes that follow PH were present as 
well, including the falls in systemic blood insulin (8, 9) 
and androgen (11) and elevations of glucagon (8, 9, 29) 
and estrogen (13). The circulating sex hormone changes 
were congruent with simultaneous measurements of 
hepatic nuclear and cytosolic binding sites for androgens 
and estrogens (9-12, 29, 30). Finally, the molecular 
studies of the oncogenes c-jun and c-Ha-ras and the 
growth factor TGF-[3 showed similar evolving patterns 
as those described by others after PH (14-17, 31). 

However, the pace of all these changes was slower in 
the transplantation model that has been observed after 
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FIG. 6. Insulin and glycagon blood levels in liver after OLT (mean ± S.D.; n = 5 for each time point). *p < 0.01 and **p < 0.001 for pre-OLT 
vs. post-OLT values at different time points. +p < 0.01 and tp < 0.001 for small vs. same-size livers at the same time points. 

PH. The DNA synthesis in our transplant experiments 
did not peak until 2 to 3 days in contrast to the 24 hr that 
has been thoroughly documented after PH with or 
without arterialization (32). The same slow development 
of all other measured regeneration parameters and a 
more prolonged response were seen. Although the 
transplanted livers did not have reconstruction of their 
hepatic artery, this feature of the model did not explain 
the slow development of regeneration because previous 
studies have shown that liver regrowth is not affected by 
dearterialization (32). 

Although these studies do not clarify the mechanisms 
of hepatic regeneration, they appear to identify factors 
that are not critical for hepatic growth control, including 
a major role of denervation (33-35), which by definition 
was complete in the transplantation model. They also 
weaken the possibility of an intrinsic autoregulatory role 
of the liver itself. Although the weanling rat liver has a 
heightened natural proliferation, the small livers in our 

experiments were from rats that weighed 100 to 140 gm, 
placing them beyond the weanling stage; their rate of 
DNA synthesis, thymidine incorporation and mitosis 
was not different from that of the same-size livers. The 
factors controlling the regeneration appeared to reside 
principally if not exclusively in the recipient envi
ronment. This conclusion has clinical relevance in view 
of the widespread clinical use of small liver fragments for 
pediatric transplantation, which have been reported to 
regenerate in the same way as whole livers (36-38). In 
either the experimental or clinical circumstances, both 
the initiation and cessation of the liver growth process 
appeared to be governed by the same rules as after PH. 

It is tempting to relate these findings to those in the 
Eck fistula model, which has been used to identify 
growth-promoting (hepatotrophic) and inhibitory (anti
hepatotrophic) substances such as specific portal venous 
constituents in blood returning from splanchnic viscera 
and other growth or antigrowth factors that include 
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some of the major immunosuppressive drugs (cyclo
sporine, FK 506 and rapamycin) used in clinical trans
plantation practice or in experimental models (39-41). 
With either PH or small-to-Iarge liver transplantation, 
the growth impulse shuts off after the appropriate size 
is reached, presumably because the stimulus for regen
eration is removed. In contrast, the heightened cell 
renewal that is characteristic after completing diversion 
of the portacaval shunt (21, 42) reaches a stable state in 
dogs over a 4-day period and then continues perma
nently thereafter. In this circumstance, the stimulus is 
apparently continuous, providing a background of 
heightened growth factor sensitivity against which 
biologically active growth (or antigrowth) substances 
can be more easily identified than in intact animals. 
Clarification ofthe link between the proliferation caused 
by PH, small-to-Iarge liver transplantation and Eck 
fistula could lead to fruitful inquiries into the basic 
mechanisms of liver growth control. 

After the transplantation of same-size livers, it was of 
interest that most of the direct and some of the 
surrogate regeneration parameters were seen, although 
less prominently than in the small-for-size livers. No
tably absent was a rise in ODC. The evidence of 
regeneration, which presumably reflected ischemic or 
other injury during the organ transfer or afterward, did 
not culminate in a demonstrable gain in liver mass for 
unexplained reasons. This incongruity may have re
flected the insensitivity of our method of liver mass 
measurement, or alternatively either or both a delayed 
signal and a "late" regeneration factor may have been 
missing under these conditions, without which the 
process of mass increase was not allowed to go forward. 
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