220 research outputs found

    Momentum dependent relaxation rate and pseudogap in doped magnetic insulators

    Full text link
    The spectral functions and corresponding self energies are calculated within the planar t-t'-J model as relevant to hole-doped cuprates using the exact diagonalization method at finite temperatures, combined with the averaging over twisted boundary conditions. Results show truncated Fermi surface at low doping and t'<0 in the antinodal region while the self energy reveals weakly k- and doping dependent anomalous relaxation rate |\Sigma''(k,\omega)|~ a+b|\omega| for \omega<0, consistent with recent ARPES results, and a pseudogap-generating component of Lorentzian form. The latter is well pronounced at low doping and strongly depends on k and t'.Comment: 5 pages, 5 figure

    On Disjoint hypercubes in Fibonacci cubes

    Full text link
    The {\em Fibonacci cube} of dimension nn, denoted as Ξ“_n\Gamma\_n, is the subgraph of nn-cube Q_nQ\_n induced by vertices with no consecutive 1's. We study the maximum number of disjoint subgraphs in Ξ“_n\Gamma\_n isomorphic to Q_kQ\_k, and denote this number by q_k(n)q\_k(n). We prove several recursive results for q_k(n)q\_k(n), in particular we prove that q_k(n)=q_kβˆ’1(nβˆ’2)+q_k(nβˆ’3)q\_{k}(n) = q\_{k-1}(n-2) + q\_{k}(n-3). We also prove a closed formula in which q_k(n)q\_k(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {q_k(n)}_n=0∞\{q\_{k}(n)\}\_{n=0}^{ \infty}

    Kraft Lignin/Tannin as a Potential Accelerator of Antioxidant and Antibacterial Properties in an Active Thermoplastic Polyester-Based Multifunctional Material

    Get PDF
    This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU\u27s goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2, 2\u27-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure

    The stiffness of elastomeric surfaces influences the mechanical properties of endothelial cells

    Full text link
    Optimal characterization of the mechanical properties of both cells and their surrounding is an issue of major interest. Indeed, cell function and development are strongly influenced by external stimuli. Furthermore, a change in cell mechanics might, in some cases, associate with diseases or malfunctioning. In this work, atomic force microscopy (AFM) was applied to examine the mechanical properties of the silicone elastomer polydimethylsiloxane (PDMS) a common substrate in cell culture. Force spectroscopy analysis was done over different specimens of this elastomeric material containing varying ratios of resin to cross-linker in its structure (5:1, 10:1, 20:1, 30:1 and 50:1), which impacts the final material properties (e.g., stiffness, elasticity). To quantify the mechanical properties of the PDMS, factors as the modulus of Young, the maximum adhesive forces as well as both relaxation amplitudes and times upon constant height contact of the tip (dwell time different of zero) were calculated from the different segments forming the force curves. It is demonstrated that the material stiffness is increased by prior oxygen plasma treatment of the sample, required for hydrophilic switching, contrarily to what observed for its adhesiveness. Subsequent incubation of endothelial HUVEC cells on top of these plasma treated PDMS systems yields minor variation in cell mechanics in comparison to those obtained on a glass reference, on which cells show much higher spreading tendency and, by extension, a remarkable membrane hardening. Thus, surface wettability turns a factor of higher relevance than substrate stiffness inducing variations in the cell mechanics.Comment: manuscript (12 pages, 4 figures, 2 tables), supplementary information (2 pages and 3 figures), the main results of the manuscript are based on a master thesi

    Synthesis and Investigation of Modified Silica Coatings for Biotechnology

    Get PDF
    Mesoporous organic-inorganic hybrid composites on glass substrates were prepared by the sol-gel method for testing the proteins adhesion. Different types of hydrophobic/hydrophilic silica sol-gels were prepared using tetraethoxysilane (TEOS) as starting material and modified with hexamethyldisilazane (HMDS). Sol-gel thin films were successfully prepared with the dip-coating technique on glass surfaces. The coatings surface characteristics were evaluated. The prepared sol-gel derived colloidal silica coatings and modified coatings were characterized by wettability measurements. Also, infrared spectroscopy, atomic force microscope (AFM) assay were used to characterise the surfaces. The coatings of colloidal silica (VT104, water contact angle 17Β°), polysiloxane sol (VT111, 64Β°) methyl-modified sols (VT079, 144Β° and VT112, 47Β°) with various wettability properties were tested for CaCo-2 cells proliferation. Methylmodified coating VT112 proved to be the best substrate for cell proliferation.Для тСстування Π°Π΄Π³Π΅Π·Ρ–Ρ— Π±Ρ–Π»ΠΊΡ–Π² золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Π·ΠΎΠΏΠΎΡ€ΡƒΠ²Π°Ρ‚Ρ– ΠΎΡ€Π³Π°Π½ΠΎ-Π½Π΅ΠΎΡ€Π³Π°Π½Ρ–Ρ‡Π½Ρ– Π³Ρ–Π±Ρ€ΠΈΠ΄Π½Ρ– ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ Π½Π° скляних ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΈΠ½ΠΊΠ°Ρ…. Π Ρ–Π·Π½Ρ– Ρ‚ΠΈΠΏΠΈ Π³Ρ–Π΄Ρ€ΠΎΡ„ΠΎΠ±Π½ΠΈΡ… Ρ‚Π° Π³Ρ–Π΄Ρ€ΠΎΡ„Ρ–Π»ΡŒΠ½ΠΈΡ… ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ½ΠΈΡ… Π·ΠΎΠ»Ρ–Π² Ρ‚Π° Π³Π΅Π»Ρ–Π² Π±ΡƒΠ»ΠΎ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π°Π½ΠΎ Π· використанням тСтраСтоксисилану (Π’Π•ΠžΠ‘) як Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Ρ– ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎ гСксамСтилдисилазаном (Π“ΠœΠ”Π‘). Π’ΠΎΠ½ΠΊΡ– золь-гСль ΠΏΠ»Ρ–Π²ΠΊΠΈ Π±ΡƒΠ»ΠΎ ΡƒΡΠΏΡ–ΡˆΠ½ΠΎ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π°Π½ΠΎ Π·Π° допомогою ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΈ глазурування занурСнням Π½Π° скляних повСрхнях. ΠžΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΎ характСристики ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π². ΠžΠ΄Π΅Ρ€ΠΆΠ°Π½Ρ– ΡˆΠ»ΡΡ…ΠΎΠΌ золь-гСль синтСзу покриття – ΠΏΠΎΡ…Ρ–Π΄Π½Ρ– ΠΊΠΎΠ»ΠΎΡ—Π΄Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ Ρ‚Π° ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½Ρ– покриття Π±ΡƒΠ»ΠΎ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½ΡΠΌ змочуваності. Для Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ Π±ΡƒΠ»ΠΎ Ρ‚Π°ΠΊΠΎΠΆ використано Π°Π½Π°Π»Ρ–Π· Π·Π° допомогою Ρ–Π½Ρ„Ρ€Π°Ρ‡Π΅Ρ€Π²ΠΎΠ½ΠΎΡ— спСктроскопії Ρ‚Π° Π°Ρ‚ΠΎΠΌΠ½ΠΎΡ— силової мікроскопії (АБМ). ΠŸΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ Π· ΠΊΠΎΠ»ΠΎΡ—Π΄Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΡƒ (VT104, ΠΊΡƒΡ‚ змочування водою 17Β°), полісилоксановий золь (VT111, 64Β°), ΠΌΠ΅Ρ‚ΠΈΠ»-ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½Ρ– Π·ΠΎΠ»Ρ– (VT079, 144Β° Ρ‚Π° VT112, 47Β°) Π· Ρ€Ρ–Π·Π½ΠΎΡŽ Π·ΠΌΠΎΡ‡ΡƒΠ²Π°Π½Ρ–ΡΡ‚ΡŽ Π±ΡƒΠ»ΠΎ протСстовано для розмноТСння ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Π‘Π°Π‘ΠΎ-2. ΠœΠ΅Ρ‚ΠΈΠ»-ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½Π΅ покриття VT112 виявилось Π½Π°ΠΉΠΊΡ€Π°Ρ‰ΠΈΠΌ субстратом для розмноТСння ΠΊΠ»Ρ–Ρ‚ΠΈΠ½.Для тСстирования Π°Π΄Π³Π΅Π·ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² золь-гСль ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ мСзопористыС ΠΎΡ€Π³Π°Π½ΠΎ-нСорганичСскиС Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ Π½Π° стСклянных ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ…. Π Π°Π·Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½Ρ‹Ρ… ΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ½Ρ‹Ρ… Π·ΠΎΠ»Π΅ΠΉ ΠΈ Π³Π΅Π»Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ с использованиСм тСтраэтоксисилана (ВЭОБ) ΠΊΠ°ΠΊ исходного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ гСксамСтилдисилазаном (Π“ΠœΠ”Π‘). Π’ΠΎΠ½ΠΊΠΈΠ΅ золь-гСль ΠΏΠ»Π΅Π½ΠΊΠΈ Π±Ρ‹Π»ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ глазурирования ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π° стСклянных повСрхностях. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ характСристики повСрхностСй ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡƒΡ‚Π΅ΠΌ золь-гСль синтСза покрытия – ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ покрытия Π±Ρ‹Π»ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ смачиваСмости. Для Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ повСрхностСй Π±Ρ‹Π» Ρ‚Π°ΠΊΠΆΠ΅ использован Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ инфракрасной спСктроскопии ΠΈ Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ силовой микроскопии (АБМ). ΠŸΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡ ΠΈΠ· ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° (VT104, ΡƒΠ³ΠΎΠ» смачивания Π²ΠΎΠ΄ΠΎΠΉ 17Β°), полисилоксановый золь (VT111, 64Β°), ΠΌΠ΅Ρ‚ΠΈΠ»-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π·ΠΎΠ»ΠΈ (VT079, 144Β° ΠΈ VT112, 47Β°) с Ρ€Π°Π·Π½ΠΎΠΉ ΡΠΌΠ°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΡΡ‚ΡŒΡŽ Π±Ρ‹Π»ΠΈ протСстированы для размноТСния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π‘Π°Π‘ΠΎ-2. ΠœΠ΅Ρ‚ΠΈΠ»ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ VT112 оказалось Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΌ субстратом для размноТСния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ

    Coated chitosan onto gauze to efficient conditions for maintenance of the wound microenvironment

    Get PDF
    The aim of this work was to evaluate the thermo-physiological comfort and moisture properties of surgical cotton gauze coated with chitosan (CH). Gauze was coated with CH at mass fractions of 0.5, 0.25, 0.125, 0.1, 0.063 wt%. Thermal, moisture management and morphological properties were evaluated. Results indicate that the functionalized medical gauze induces low capilarity, allowing a good degree of moisture and absorption capacity of wound exudates. This biofunctional medical gauze coated with CH0,125 wt% demonstrates to deliver an efficient coating and promote the best conditions for maintenance of the wound microenvironment.Jefferson Souza acknowledge CAPES Foundation, the Ministry of Education of Brazil, Proc. no 8976/13-9 and the Department of Textile Engineering of the University of Minho, Portugal. Andrea Zille acknowledges funding from FCT within the scope of the project POCI-01- 0145-FEDER-007136 and UID/CTM/00264. This work is financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007136.info:eu-repo/semantics/publishedVersio
    • …
    corecore