220 research outputs found
Momentum dependent relaxation rate and pseudogap in doped magnetic insulators
The spectral functions and corresponding self energies are calculated within
the planar t-t'-J model as relevant to hole-doped cuprates using the exact
diagonalization method at finite temperatures, combined with the averaging over
twisted boundary conditions. Results show truncated Fermi surface at low doping
and t'<0 in the antinodal region while the self energy reveals weakly k- and
doping dependent anomalous relaxation rate |\Sigma''(k,\omega)|~ a+b|\omega|
for \omega<0, consistent with recent ARPES results, and a pseudogap-generating
component of Lorentzian form. The latter is well pronounced at low doping and
strongly depends on k and t'.Comment: 5 pages, 5 figure
On Disjoint hypercubes in Fibonacci cubes
The {\em Fibonacci cube} of dimension , denoted as , is the
subgraph of -cube induced by vertices with no consecutive 1's. We
study the maximum number of disjoint subgraphs in isomorphic to
, and denote this number by . We prove several recursive results
for , in particular we prove that . We also prove a closed formula in which is given in
terms of Fibonacci numbers, and finally we give the generating function for the
sequence
Kraft Lignin/Tannin as a Potential Accelerator of Antioxidant and Antibacterial Properties in an Active Thermoplastic Polyester-Based Multifunctional Material
This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU\u27s goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2, 2\u27-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure
The stiffness of elastomeric surfaces influences the mechanical properties of endothelial cells
Optimal characterization of the mechanical properties of both cells and their
surrounding is an issue of major interest. Indeed, cell function and
development are strongly influenced by external stimuli. Furthermore, a change
in cell mechanics might, in some cases, associate with diseases or
malfunctioning. In this work, atomic force microscopy (AFM) was applied to
examine the mechanical properties of the silicone elastomer
polydimethylsiloxane (PDMS) a common substrate in cell culture. Force
spectroscopy analysis was done over different specimens of this elastomeric
material containing varying ratios of resin to cross-linker in its structure
(5:1, 10:1, 20:1, 30:1 and 50:1), which impacts the final material properties
(e.g., stiffness, elasticity). To quantify the mechanical properties of the
PDMS, factors as the modulus of Young, the maximum adhesive forces as well as
both relaxation amplitudes and times upon constant height contact of the tip
(dwell time different of zero) were calculated from the different segments
forming the force curves. It is demonstrated that the material stiffness is
increased by prior oxygen plasma treatment of the sample, required for
hydrophilic switching, contrarily to what observed for its adhesiveness.
Subsequent incubation of endothelial HUVEC cells on top of these plasma treated
PDMS systems yields minor variation in cell mechanics in comparison to those
obtained on a glass reference, on which cells show much higher spreading
tendency and, by extension, a remarkable membrane hardening. Thus, surface
wettability turns a factor of higher relevance than substrate stiffness
inducing variations in the cell mechanics.Comment: manuscript (12 pages, 4 figures, 2 tables), supplementary information
(2 pages and 3 figures), the main results of the manuscript are based on a
master thesi
Synthesis and Investigation of Modified Silica Coatings for Biotechnology
Mesoporous organic-inorganic hybrid composites on glass substrates were prepared by the sol-gel method for testing the proteins adhesion. Different types of hydrophobic/hydrophilic silica sol-gels were prepared using tetraethoxysilane (TEOS) as starting material and modified with hexamethyldisilazane (HMDS). Sol-gel thin films were successfully prepared with the dip-coating technique on glass surfaces. The coatings surface characteristics were evaluated. The prepared sol-gel derived colloidal silica coatings and modified coatings were characterized by wettability measurements. Also, infrared spectroscopy, atomic force microscope (AFM) assay were used to characterise the surfaces. The coatings of colloidal silica (VT104, water contact angle 17Β°), polysiloxane sol (VT111, 64Β°) methyl-modified sols (VT079, 144Β° and VT112, 47Β°) with various wettability properties were tested for CaCo-2 cells proliferation. Methylmodified coating VT112 proved to be the best substrate for cell proliferation.ΠΠ»Ρ ΡΠ΅ΡΡΡΠ²Π°Π½Π½Ρ Π°Π΄Π³Π΅Π·ΡΡ Π±ΡΠ»ΠΊΡΠ² Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Π·ΠΎΠΏΠΎΡΡΠ²Π°ΡΡ ΠΎΡΠ³Π°Π½ΠΎ-Π½Π΅ΠΎΡΠ³Π°Π½ΡΡΠ½Ρ Π³ΡΠ±ΡΠΈΠ΄Π½Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈ Π½Π° ΡΠΊΠ»ΡΠ½ΠΈΡ
ΠΏΡΠ΄ΠΊΠ»Π°Π΄ΠΈΠ½ΠΊΠ°Ρ
. Π ΡΠ·Π½Ρ ΡΠΈΠΏΠΈ Π³ΡΠ΄ΡΠΎΡΠΎΠ±Π½ΠΈΡ
ΡΠ° Π³ΡΠ΄ΡΠΎΡΡΠ»ΡΠ½ΠΈΡ
ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ½ΠΈΡ
Π·ΠΎΠ»ΡΠ² ΡΠ° Π³Π΅Π»ΡΠ² Π±ΡΠ»ΠΎ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π°Π½ΠΎ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΡΠ΅ΡΡΠ°Π΅ΡΠΎΠΊΡΠΈΡΠΈΠ»Π°Π½Ρ (Π’ΠΠΠ‘) ΡΠΊ Π²ΠΈΡ
ΡΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»Ρ Ρ ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½ΠΎ Π³Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠΈΠ»Π΄ΠΈΡΠΈΠ»Π°Π·Π°Π½ΠΎΠΌ (ΠΠΠΠ‘). Π’ΠΎΠ½ΠΊΡ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΏΠ»ΡΠ²ΠΊΠΈ Π±ΡΠ»ΠΎ ΡΡΠΏΡΡΠ½ΠΎ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π°Π½ΠΎ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΈ Π³Π»Π°Π·ΡΡΡΠ²Π°Π½Π½Ρ Π·Π°Π½ΡΡΠ΅Π½Π½ΡΠΌ Π½Π° ΡΠΊΠ»ΡΠ½ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΡΡ
. ΠΠ΄Π΅ΡΠΆΠ°Π½ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠΎΠ²Π΅ΡΡ
ΠΎΠ½Ρ ΠΏΠΎΠΊΡΠΈΡΡΡΠ². ΠΠ΄Π΅ΡΠΆΠ°Π½Ρ ΡΠ»ΡΡ
ΠΎΠΌ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Ρ ΠΏΠΎΠΊΡΠΈΡΡΡ β ΠΏΠΎΡ
ΡΠ΄Π½Ρ ΠΊΠΎΠ»ΠΎΡΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΡ ΡΠ° ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½Ρ ΠΏΠΎΠΊΡΠΈΡΡΡ Π±ΡΠ»ΠΎ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎ Π²ΠΈΠΌΡΡΡΠ²Π°Π½Π½ΡΠΌ Π·ΠΌΠΎΡΡΠ²Π°Π½ΠΎΡΡΡ. ΠΠ»Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·Π°ΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ
ΠΎΠ½Ρ Π±ΡΠ»ΠΎ ΡΠ°ΠΊΠΎΠΆ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½ΠΎ Π°Π½Π°Π»ΡΠ· Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΡΠ½ΡΡΠ°ΡΠ΅ΡΠ²ΠΎΠ½ΠΎΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ ΡΠ° Π°ΡΠΎΠΌΠ½ΠΎΡ ΡΠΈΠ»ΠΎΠ²ΠΎΡ ΠΌΡΠΊΡΠΎΡΠΊΠΎΠΏΡΡ (ΠΠ‘Π). ΠΠΎΠΊΡΠΈΡΡΡ Π· ΠΊΠΎΠ»ΠΎΡΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΡ (VT104, ΠΊΡΡ Π·ΠΌΠΎΡΡΠ²Π°Π½Π½Ρ Π²ΠΎΠ΄ΠΎΡ 17Β°), ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΠΊΡΠ°Π½ΠΎΠ²ΠΈΠΉ Π·ΠΎΠ»Ρ (VT111, 64Β°), ΠΌΠ΅ΡΠΈΠ»-ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½Ρ Π·ΠΎΠ»Ρ (VT079, 144Β° ΡΠ° VT112, 47Β°) Π· ΡΡΠ·Π½ΠΎΡ Π·ΠΌΠΎΡΡΠ²Π°Π½ΡΡΡΡ Π±ΡΠ»ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΎ Π΄Π»Ρ ΡΠΎΠ·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½Ρ ΠΊΠ»ΡΡΠΈΠ½ Π‘Π°Π‘ΠΎ-2. ΠΠ΅ΡΠΈΠ»-ΠΌΠΎΠ΄ΠΈΡΡΠΊΠΎΠ²Π°Π½Π΅ ΠΏΠΎΠΊΡΠΈΡΡΡ VT112 Π²ΠΈΡΠ²ΠΈΠ»ΠΎΡΡ Π½Π°ΠΉΠΊΡΠ°ΡΠΈΠΌ ΡΡΠ±ΡΡΡΠ°ΡΠΎΠΌ Π΄Π»Ρ ΡΠΎΠ·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½Ρ ΠΊΠ»ΡΡΠΈΠ½.ΠΠ»Ρ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π΄Π³Π΅Π·ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ ΠΌΠ΅Π·ΠΎΠΏΠΎΡΠΈΡΡΡΠ΅ ΠΎΡΠ³Π°Π½ΠΎ-Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡ Π½Π° ΡΡΠ΅ΠΊΠ»ΡΠ½Π½ΡΡ
ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ
. Π Π°Π·Π½ΡΠ΅ ΡΠΈΠΏΡ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΡΡ
ΠΈ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΡΠ½ΡΡ
ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ½ΡΡ
Π·ΠΎΠ»Π΅ΠΉ ΠΈ Π³Π΅Π»Π΅ΠΉ Π±ΡΠ»ΠΈ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅ΡΡΠ°ΡΡΠΎΠΊΡΠΈΡΠΈΠ»Π°Π½Π° (Π’ΠΠΠ‘) ΠΊΠ°ΠΊ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ Π³Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠΈΠ»Π΄ΠΈΡΠΈΠ»Π°Π·Π°Π½ΠΎΠΌ (ΠΠΠΠ‘). Π’ΠΎΠ½ΠΊΠΈΠ΅ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΠΏΠ»Π΅Π½ΠΊΠΈ Π±ΡΠ»ΠΈ ΡΡΠΏΠ΅ΡΠ½ΠΎ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π³Π»Π°Π·ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ³ΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΡΠ΅ΠΊΠ»ΡΠ½Π½ΡΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΡ
. ΠΠΎΠ»ΡΡΠ΅Π½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ ΠΏΠΎΠΊΡΡΡΠΈΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΡΠ΅ΠΌ Π·ΠΎΠ»Ρ-Π³Π΅Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΏΠΎΠΊΡΡΡΠΈΡ β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠΊΡΡΡΠΈΡ Π±ΡΠ»ΠΈ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΌΠ°ΡΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ. ΠΠ»Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ΅ΠΉ Π±ΡΠ» ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π°Π½Π°Π»ΠΈΠ· Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ Π°ΡΠΎΠΌΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (ΠΠ‘Π). ΠΠΎΠΊΡΡΡΠΈΡ ΠΈΠ· ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠ΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° (VT104, ΡΠ³ΠΎΠ» ΡΠΌΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π²ΠΎΠ΄ΠΎΠΉ 17Β°), ΠΏΠΎΠ»ΠΈΡΠΈΠ»ΠΎΠΊΡΠ°Π½ΠΎΠ²ΡΠΉ Π·ΠΎΠ»Ρ (VT111, 64Β°), ΠΌΠ΅ΡΠΈΠ»-ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π·ΠΎΠ»ΠΈ (VT079, 144Β° ΠΈ VT112, 47Β°) Ρ ΡΠ°Π·Π½ΠΎΠΉ ΡΠΌΠ°ΡΠΈΠ²Π°Π΅ΠΌΠΎΡΡΡΡ Π±ΡΠ»ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π‘Π°Π‘ΠΎ-2. ΠΠ΅ΡΠΈΠ»ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΏΠΎΠΊΡΡΡΠΈΠ΅ VT112 ΠΎΠΊΠ°Π·Π°Π»ΠΎΡΡ Π½Π°ΠΈΠ»ΡΡΡΠΈΠΌ ΡΡΠ±ΡΡΡΠ°ΡΠΎΠΌ Π΄Π»Ρ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ
Coated chitosan onto gauze to efficient conditions for maintenance of the wound microenvironment
The aim of this work was to evaluate the thermo-physiological comfort and moisture properties of surgical cotton gauze coated with chitosan (CH). Gauze was coated with CH at mass fractions of 0.5, 0.25, 0.125, 0.1, 0.063 wt%. Thermal, moisture management and morphological properties were evaluated. Results indicate that the functionalized medical gauze induces low capilarity, allowing a good degree of moisture and absorption capacity of wound exudates. This biofunctional medical gauze coated with CH0,125 wt% demonstrates to deliver an efficient coating and promote the best conditions for maintenance of the wound microenvironment.Jefferson Souza acknowledge CAPES Foundation, the Ministry of Education of Brazil, Proc. no 8976/13-9 and
the Department of Textile Engineering of the University of Minho, Portugal. Andrea Zille acknowledges funding
from FCT within the scope of the project POCI-01- 0145-FEDER-007136 and UID/CTM/00264. This work is
financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT β Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007136.info:eu-repo/semantics/publishedVersio
- β¦