58 research outputs found

    A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents

    Get PDF
    In many biomedical applications, the performance of biomaterials depends largely on their degradation behavior. For instance, in drug delivery applications, the polymeric carrier should degrade under physiological conditions slowly releasing the encapsulated drug. The aim of this work was, therefore, to develop an enzymaticmediated degradation carrier system for the delivery of differentiation agents to be used in bone tissue engineering applications. For that, a polymeric blend of starch with polycaprolactone (SPCL) was used to produce a microparticle carrier for the controlled release of dexamethasone (DEX). In order to investigate the effect of enzymes on the degradation behavior of the developed system and release profile of the encapsulated osteogenic agent (DEX), the microparticles were incubated in phosphate buffer solution in the presence of a-amylase and/or lipase enzymes (at physiological concentrations), at 37 C for different periods of time. The degradation was followed by gravimetric measurements, scanning electron microscopy (SEM) and Fourier transformed infrared (FTIR) spectroscopy and the release of DEX was monitored by high performance liquid chromatography (HPLC). The developed microparticles were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with degradation time when compared with control samples (incubation in buffer only). For longer degradation times, the diameter of the microparticles decreased significantly and a highly porous matrix was obtained. The in vitro release studies showed a sustained release pattern with 48% of the encapsulated drug being released for a period of 30 days. As the degradation proceeds, it is expected that the remaining encapsulated drug will be completely released as a consequence of an increasingly permeable matrix and faster diffusion of the drug. Cytocompatibility results indicated the possibility of the developed microparticles to be used as biomaterial due to their reduced cytotoxic effects

    How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth

    Get PDF
    This study investigated how substrate geometry influences in-vitro tissue formation at length scales much larger than a single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular channels of 0.5 mm radius, mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells for 4 weeks. The amount and shape of the tissue formed in the pores, as measured using phase contrast microscopy, depended on the substrate geometry. It was further demonstrated, using a simple geometric model, that the observed curvature-controlled growth can be derived from the assembly of tensile elements on a curved substrate. These tensile elements are cells anchored on distant points of the curved surface, thus creating an actin “chord” by generating tension between the adhesion sites. Such a chord model was used to link the shape of the substrate to cell organisation and tissue patterning. In a pore with a circular cross-section, tissue growth increases the average curvature of the surface, whereas a semi-circular channel tends to be flattened out. Thereby, a single mechanism could describe new tissue growth in both cortical and trabecular bone after resorption due to remodelling. These similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone remodelling

    Bioresorbable scaffolds for percutaneous coronary interventions

    No full text

    Perceptions and Realities of Study Abroad at UWEC : Understanding and Improving Participation in Study Abroad Programs

    No full text
    Color poster with text, images, graphs, and charts.UW-Eau Claire would like to ensure that learning abroad programs are accessible to all students. Decreases in student participation over the years may be a question of affordability, integration with students' disciplinary interests, student perception of obstacles (cost, time, etc.), incomplete information, or an issue of preparation and planning. To better understand learning abroad participation, our research group evaluated five years of participation data in UWEC's formal study abroad programs and in UWEC's more recently developed international faculty-led programs.University of Wisconsin--Eau Claire Office of Research and Sponsored Programs

    A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study

    Full text link
    Three dimensional (3D) open porous scaffolds are commonly used in tissue engineering (TE) applications to provide an initial template for cell attachment and subsequent cell growth and construct development. The macroscopic geometry of the scaffold is key in determining the kinetics of cell growth and thus in vitro ‘tissue’ formation. In this study we developed a computational framework based on the level set methodology to predict curvature-dependent growth of the cell/extracellular matrix domain within TE constructs. Scaffolds with various geometries (hexagonal, square, triangular) and pore sizes (500 and 1000 µm) were produced in house by additive manufacturing, seeded with human periosteum-derived cells and cultured under static conditions for 14 days. Using the projected tissue area as an output measure, the comparison between the experimental and the numerical results demonstrated a good qualitative and quantitative behavior of the framework. The model in its current form is able to provide important spatio-temporal information on final shape and speed of pore-filling of tissue engineered constructs by cells and extracellular matrix during static culture
    corecore