3,846 research outputs found

    Explaining Violation Traces with Finite State Natural Language Generation Models

    Full text link
    An essential element of any verification technique is that of identifying and communicating to the user, system behaviour which leads to a deviation from the expected behaviour. Such behaviours are typically made available as long traces of system actions which would benefit from a natural language explanation of the trace and especially in the context of business logic level specifications. In this paper we present a natural language generation model which can be used to explain such traces. A key idea is that the explanation language is a CNL that is, formally speaking, regular language susceptible transformations that can be expressed with finite state machinery. At the same time it admits various forms of abstraction and simplification which contribute to the naturalness of explanations that are communicated to the user

    Cd-vacancy and Cd-interstitial complexes in Si and Ge

    Get PDF
    The electrical field gradient (EFG), measured e.g. in perturbed angular correlation (PAC) experiments, gives particularly useful information about the interaction of probe atoms like 111In / 111Cd with other defects. The interpretation of the EFG is, however, a difficult task. This paper aims at understanding the interaction of Cd impurities with vacancies and interstitials in Si and Ge, which represents a controversial issue. We apply two complementary ab initio methods in the framework of density functional theory (DFT), (i) the all electron Korringa-Kohn-Rostoker (KKR) Greenfunction method and (ii) the Pseudopotential-Plane-Wave (PPW) method, to search for the correct local geometry. Surprisingly we find that both in Si and Ge the substitutional Cd-vacancy complex is unstable and relaxes to a split-vacancy complex with the Cd on the bond-center site. This complex has a very small EFG, allowing a unique assignment of the small measured EFGs of 54MHz in Ge and 28MHz in Si. Also, for the Cd-selfinterstitial complex we obtain a highly symmetrical split configuration with large EFGs, being in reasonable agreement with experiments

    Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo

    Get PDF
    The CyIIIa·CAT fusion gene was injected into Strongylocentrotus purpuratus eggs, together with excess ligated competitor sequences representing subregions of the CyIIIa regulatory domain. In this construct, the chloramphenicol acetyltransferase (CAT) reporter gene is placed under the control of the 2300 nucleotide upstream regulatory domain of the lineage-specific CyIIIa cytoskeletal actin gene. CAT mRNA was detected by in situ hybridization in serial sections of pluteus stage embryos derived from the injected eggs. When carrier DNA lacking competitor CyIIIa fragments was coinjected with CyIIIa.CAT, CAT mRNA was observed exclusively in aboral ectoderm cells, i.e. the territory in which the CyIIIa gene itself is normally expressed (as also reported by us previously). The same result was obtained when five of seven different competitor subfragments bearing sites of DNA-protein interaction were coinjected. However, coinjection of excess quantities of either of two widely separated, nonhomologous fragments of the CyIIIa regulatory domain produced a dramatic ectopic expression of CAT mRNA in the recipient embryos. CAT mRNA was observed in gut, mesenchyme cells and oral ectoderm in these embryos. We conclude that these fragments contain regulatory sites that negatively control spatial expression of the CyIIIa gene

    Vacancy complexes with oversized impurities in Si and Ge

    Get PDF
    In this paper we examine the electronic and geometrical structure of impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si the pairing of Sn with the vacancy produces a complex with the Sn-atom at the bond center and the vacancy split into two half vacancies on the neighboring sites. Within the framework of density-functional theory we use two complementary ab initio methods, the pseudopotential plane wave (PPW) method and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the structure of vacancy complexes with 11 different sp-impurities. For the case of Sn in Si, we confirm the split configuration and obtain good agreement with EPR data of Watkins. In general we find that all impurities of the 5sp and 6sp series in Si and Ge prefer the split-vacancy configuration, with an energy gain of 0.5 to 1 eV compared to the substitutional complex. On the other hand, impurities of the 3sp and 4sp series form a (slightly distorted) substitutional complex. Al impurities show an exception from this rule, forming a split complex in Si and a strongly distorted substitutional complex in Ge. We find a strong correlation of these data with the size of the isolated impurities, being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Get PDF
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    Field-induced structural aging in glasses at ultra low temperatures

    Full text link
    In non-equilibrium experiments on the glasses Mylar and BK7, we measured the excess dielectric response after the temporary application of a strong electric bias field at mK--temperatures. A model recently developed describes the observed long time decays qualitatively for Mylar [PRL 90, 105501, S. Ludwig, P. Nalbach, D. Rosenberg, D. Osheroff], but fails for BK7. In contrast, our results on both samples can be described by including an additional mechanism to the mentioned model with temperature independent decay times of the excess dielectric response. As the origin of this novel process beyond the "tunneling model" we suggest bias field induced structural rearrangements of "tunneling states" that decay by quantum mechanical tunneling.Comment: 4 pages, 4 figures, accepted at PRL, corrected typos in version

    Charge injection instability in perfect insulators

    Full text link
    We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated with an instability of the insulating state or with bistability of the insulating and the charged state. The effect of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized charge cloud forms near the injecting defect (or contact). Charge injection stops when the field enhancement is screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mechanism and the final charged steady state are discussed for a simple model and for cylindrical and spherical geometries. The theory explains an experimentally observed increase of the critical electric field with decreasing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.Comment: Revtex, 7pages, 4 ps figure

    Studies of extraterrestrial dust at 40 kilometers /1966/ Final report

    Get PDF
    Extraterrestrial dust in stratospheric sampling collected by balloon-borne prob

    Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface

    Get PDF
    We present ob initio calculations for orbital moments and anisotropy energies of 3d and 5d adatoms on the Ag(001) surface, based on density functional theory, including Brooks' orbital polarization (OP) term, and applying a fully relativistic Korringa-Kohn-Rostoker-Green's function method. In general, we find unusually large orbital moments and anisotropy energies, e.g., in the 3d series. 2.57 mu (B) and +74 meV for Co, and, in the 5d series, 1.78 mu (B) and +42 meV for Os. These magnetic properties are determined mainly by the OP and even exist without spin-orbit coupling

    Massively parallel density functional calculations for thousands of atoms: KKRnano

    Get PDF
    Applications of existing precise electronic-structure methods based on density functional theory are typically limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in material science, e. g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-Kohn-Rostoker (KKR) Green's-function method. We conceptualized, developed, and optimized KKRnano for large-scale applications of many thousands of atoms without compromising on the precision of a full-potential all-electron method, i.e., it is a method without any shape approximation of the charge density or potential. A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level parallelization allows for an efficient use of up to 100 000 processors on the latest generation of supercomputers. The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and showing scaling results for NiPd alloys up to 8192 atoms and 65 536 processors. At the end, we present an order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the KKR Green's-function approach by introducing a truncation of the electron scattering to a local cluster of atoms, the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling calculations of more than 16 000 NiPd atoms
    • …
    corecore